Patents by Inventor Fang RUAN
Fang RUAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11613808Abstract: Exemplary semiconductor processing methods may include forming a seasoning film on a heater of a processing chamber by a first deposition process. The method may include performing a hardmask deposition process in the processing chamber. The method may include cleaning the processing chamber by a first cleaning process. The method may include monitoring a gas produced during the first cleaning process. The method may include cleaning the processing chamber using a second cleaning process different from the first cleaning process. The method may also include monitoring the gas produced during the second cleaning process.Type: GrantFiled: October 22, 2020Date of Patent: March 28, 2023Assignee: Applied Materials, Inc.Inventors: Jiheng Zhao, Abdul Aziz Khaja, Prashant Kumar Kulshreshtha, Fang Ruan
-
Patent number: 11430641Abstract: Exemplary methods of semiconductor processing may include forming a plasma of a fluorine-containing precursor. The methods may include performing a chamber clean in a processing region of a semiconductor processing chamber. The processing region may be at least partially defined between a faceplate and a substrate support. The methods may include generating aluminum fluoride during the chamber clean. The methods may include contacting surfaces within the processing region with a carbon-containing precursor. The methods may include volatilizing aluminum fluoride from the surfaces of the processing region.Type: GrantFiled: July 2, 2021Date of Patent: August 30, 2022Assignee: Applied Materials, Inc.Inventors: Vivien Chua, Prashant Kumar Kulshreshtha, Zhijun Jiang, Fang Ruan, Diwakar Kedlaya
-
Publication number: 20220127722Abstract: Exemplary semiconductor processing methods may include forming a seasoning film on a heater of a processing chamber by a first deposition process. The method may include performing a hardmask deposition process in the processing chamber. The method may include cleaning the processing chamber by a first cleaning process. The method may include monitoring a gas produced during the first cleaning process. The method may include cleaning the processing chamber using a second cleaning process different from the first cleaning process. The method may also include monitoring the gas produced during the second cleaning process.Type: ApplicationFiled: October 22, 2020Publication date: April 28, 2022Applicant: Applied Materials, Inc.Inventors: Jiheng Zhao, Abdul Aziz Khaja, Prashant Kumar Kulshreshtha, Fang Ruan
-
Publication number: 20220122822Abstract: Semiconductor processing systems according to embodiments of the present technology may include a chamber body having sidewalls and a base. The chamber body may define an internal volume. The systems may include a substrate support assembly having a shaft and a platen coupled with the shaft along a first surface of the platen. The semiconductor processing systems may include a cover plate positioned on the platen of the substrate support assembly along a second surface of the platen opposite the first surface. The cover plate may include a flange extending about an exterior region of the cover plate. The flange may be in direct contact with the platen. The cover plate may include an upper wall vertically offset from the flange. An interior volume may be defined between the upper wall and the platen of the substrate support assembly.Type: ApplicationFiled: October 21, 2020Publication date: April 21, 2022Applicant: Applied Materials, Inc.Inventors: Venkata Sharat Chandra Parimi, Satish Radhakrishnan, Diwakar Kedlaya, Fang Ruan, Amit Bansal
-
Publication number: 20220122851Abstract: A semiconductor processing system includes a remote plasma source (RPS), a faceplate, and an output manifold positioned between the RPS and the faceplate. The output manifold is characterized by a plurality of purge outlets that are fluidly coupled with a purge gas source and a plurality of deposition outlets that are fluidly coupled with a deposition gas source. A delivery tube extends between and fluidly couples the RPS and the faceplate. The delivery tube is characterized by a generally cylindrical sidewall that defines an upper plurality of apertures that are arranged in a radial pattern. Each of the upper apertures is fluidly coupled with one of the purge outlets. The generally cylindrical sidewall defines a lower plurality of apertures that are arranged in a radial pattern and below the upper plurality of apertures. Each of the lower apertures is fluidly coupled with one of the deposition outlets.Type: ApplicationFiled: October 15, 2020Publication date: April 21, 2022Applicant: Applied Materials, Inc.Inventors: Fang Ruan, Diwakar Kedlaya, Amit Bansal, Venkata Sharat Chandra Parimi, Rajaram Narayanan, Badri N. Ramamurthi, Sherry L. Mings, Job George Konnoth Joseph, Rupankar Choudhury
-
Publication number: 20220108891Abstract: Exemplary semiconductor processing chambers may include a faceplate assembly characterized by at least one surface defining a number of voids. Each void is configured to receive an interchangeable thermal body that can be selected from multiple interchangeable thermal bodies. Exemplary semiconductor processing chambers may also include a gas box characterized by movable members. Each movable member is configured to engage a delivery port and is movable to provide flow control for a gas being delivered to the processing volume through a gas flow path. Zoned flow and/or temperature control may be provided by the faceplate assembly, the gas box, or both.Type: ApplicationFiled: October 6, 2020Publication date: April 7, 2022Applicant: Applied Materials, Inc.Inventors: Zubin Huang, Manjunath Veerappa Chobari Patil, Diwakar Kedlaya, Truong Van Nguyen, Pavan Kumar Murali Kumar, Subrahmanyam Veerisetty, Venkata Sharat Chandra Parimi, Fang Ruan
-
Publication number: 20210335574Abstract: Exemplary semiconductor processing chambers may include a gasbox. The chambers may include a substrate support. The chambers may include a blocker plate positioned between the gasbox and the substrate support. The blocker plate may define a plurality of apertures through the plate. The chambers may include a faceplate positioned between the blocker plate and substrate support. The faceplate may be characterized by a first surface facing the blocker plate and a second surface opposite the first surface. The second surface of the faceplate and the substrate support may at least partially define a processing region within the semiconductor processing chamber. The faceplate may be characterized by a central axis, and the faceplate may define a plurality of apertures through the faceplate. The faceplate may define a plurality of recesses extending about and radially outward of the plurality of apertures.Type: ApplicationFiled: April 23, 2020Publication date: October 28, 2021Applicant: Applied Materials, Inc.Inventors: Fang Ruan, Prashant Kumar Kulshreshtha, Rajaram Narayanan, Diwakar Kedlaya
-
Publication number: 20210156028Abstract: Exemplary semiconductor processing chambers may include a gasbox. The chambers may include a substrate support. The chambers may include a blocker plate positioned between the gasbox and the substrate support. The blocker plate may define a plurality of apertures through the plate. The chambers may include a faceplate positioned between the blocker plate and substrate support. The faceplate may be characterized by a first surface facing the blocker plate and a second surface opposite the first surface. The second surface of the faceplate and the substrate support may at least partially define a processing region within the semiconductor processing chamber. The faceplate may be characterized by a central axis, and the faceplate may define a plurality of apertures through the faceplate. The faceplate may define a central recess about the central axis extending from the second surface of the faceplate to a depth less than a thickness of the faceplate.Type: ApplicationFiled: November 27, 2019Publication date: May 27, 2021Applicant: Applied Materials, Inc.Inventors: Fang Ruan, Prashant Kumar Kulshreshtha, Jiheng Zhao, Diwakar Kedlaya
-
Patent number: 11009455Abstract: Systems and methods used to deliver a processing gas having a desired diborane concentration to a processing volume of a processing chamber are provided herein. In one embodiment a system includes a borane concentration sensor. The borane concentration sensor includes a body and a plurality of windows. Here, individual ones of the plurality of windows are disposed at opposite ends of the body and the body and the plurality of windows collectively define a cell volume. The borane concentration sensor further includes a radiation source disposed outside of the cell volume proximate to a first window of the plurality of windows, and a radiation detector disposed outside the cell volume proximate to a second window of the plurality of windows.Type: GrantFiled: July 2, 2019Date of Patent: May 18, 2021Assignee: APPLIED MATERIALS, INC.Inventors: Zubin Huang, Sarah Langlois White, Jonathan Robert Bakke, Diwakar N. Kedlaya, Juan Carlos Rocha, Fang Ruan
-
Publication number: 20210142984Abstract: Exemplary semiconductor processing chambers may include an inlet manifold defining a central aperture. The inlet manifold may also define a first channel and a second channel, and each of the channels may extend through the inlet manifold radially outward of the central aperture. The chambers may also include a gasbox characterized by a first surface facing the inlet manifold and a second surface opposite the first. The gasbox may define a central aperture aligned with the central aperture of the inlet manifold. The gasbox may define a first annular channel in the first surface extending about the central aperture of the gasbox and fluidly coupled with the first channel of the inlet manifold. The gasbox may define a second annular channel extending radially outward of the first and fluidly coupled with the second channel of the inlet manifold. The second annular channel may be fluidly isolated from the first.Type: ApplicationFiled: November 4, 2020Publication date: May 13, 2021Applicant: Applied Materials, Inc.Inventors: Fang Ruan, Diwakar Kedlaya, Truong Van Nguyen, Mingle Tong, Sherry L. Mings, Venkata Sharat Chandra Parimi
-
Publication number: 20210143029Abstract: A system may include a main line for delivering a first gas, and a sensor for measuring a concentration of a precursor in the first gas delivered through the main line. The system may further include first and second sublines for providing fluid access to first and second processing chambers, respectively. The first subline may include a first flow controller for controlling the first gas flowed through the first subline. The second subline may include a second flow controller for controlling the first gas flowed through the second subline. A delivery controller may be configured to control the first and second flow controllers based on the measured concentration of the precursor to deliver a first mixture of the first gas and a second gas and a second mixture of the first and second gases into the first and second semiconductor processing chambers, respectively.Type: ApplicationFiled: November 11, 2020Publication date: May 13, 2021Applicant: Applied Materials, Inc.Inventors: Diwakar Kedlaya, Fang Ruan, Zubin Huang, Ganesh Balasubramanian, Kaushik Alayavalli, Martin Seamons, Kwangduk Lee, Rajaram Narayanan, Karthik Janakiraman
-
Publication number: 20210134568Abstract: Semiconductor processing systems and methods are disclosed. An exemplary semiconductor processing system may include a semiconductor processing chamber containing a solid boron deposit, a remote plasma unit disposed upstream of the semiconductor processing chamber, and an optical absorption sensor disposed downstream of the semiconductor processing chamber. The remote plasma unit may be configured to generate plasma effluents from a fluorine-containing precursor. The optical absorption sensor may be configured to measure within an outflow from the semiconductor processing chamber a level of a boron-containing compound produced via a reaction between at least a portion of the solid boron deposit and the plasma effluents flowed from the remote plasma unit into the semiconductor processing chamber.Type: ApplicationFiled: October 30, 2020Publication date: May 6, 2021Applicant: Applied Materials, Inc.Inventors: Fang Ruan, Diwakar Kedlaya
-
Publication number: 20200266064Abstract: Embodiments of the present disclosure generally relate to a method of processing a substrate. The method includes exposing the substrate positioned in a processing volume of a processing chamber to a hydrocarbon-containing gas mixture, exposing the substrate to a boron-containing gas mixture, and generating a radio frequency (RF) plasma in the processing volume to deposit a boron-carbon film on the substrate. The hydrocarbon-containing gas mixture and the boron-containing gas mixture are flowed into the processing volume at a precursor ratio of (boron-containing gas mixture/((boron-containing gas mixture)+hydrocarbon-containing gas mixture) of about 0.38 to about 0.85. The boron-carbon hardmask film provides high modulus, etch selectivity, and stress for high aspect-ratio features (e.g., 10:1 or above) and smaller dimension devices (e.g., 7 nm node or below).Type: ApplicationFiled: February 13, 2020Publication date: August 20, 2020Inventors: Rajaram NARAYANAN, Fang RUAN, Prashant Kumar KULSHRESHTHA, Diwakar N. KEDLAYA, Karthik JANAKIRAMAN
-
Publication number: 20200041407Abstract: Systems and methods used to deliver a processing gas having a desired diborane concentration to a processing volume of a processing chamber are provided herein. In one embodiment a system includes a borane concentration sensor. The borane concentration sensor includes a body and a plurality of windows. Here, individual ones of the plurality of windows are disposed at opposite ends of the body and the body and the plurality of windows collectively define a cell volume. The borane concentration sensor further includes a radiation source disposed outside of the cell volume proximate to a first window of the plurality of windows, and a radiation detector disposed outside the cell volume proximate to a second window of the plurality of windows.Type: ApplicationFiled: July 2, 2019Publication date: February 6, 2020Inventors: Zubin HUANG, Sarah Langlois WHITE, Jonathan Robert BAKKE, Diwakar N. KEDLAYA, Juan Carlos ROCHA, Fang RUAN