Patents by Inventor Fang Z. Peng

Fang Z. Peng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10476269
    Abstract: A method for independent real and reactive power flow control without sensing receiving end voltage in a power flow controller (PFC) includes calculating a first reference phase angle, calculating a first reference voltage, modifying the first reference phase angle calculated using a first phasor modifier, calculating a first reference current for a first terminal, calculating a second reference phase angle for current through the first terminal, calculating a second reference voltage across a second CMI by subtracting voltages at the first terminal and a second terminal, and controlling the first CMI and the second CMI for controlling the power flow through the PFC.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: November 12, 2019
    Assignee: Board of Trustees of Michigan State University
    Inventors: Fang Z. Peng, Shuitao Yang, Deepak Gunasekaran
  • Publication number: 20180241212
    Abstract: A method for independent real and reactive power flow control without sensing receiving end voltage in a power flow controller (PFC) includes calculating a first reference phase angle, calculating a first reference voltage, modifying the first reference phase angle calculated using a first phasor modifier, calculating a first reference current for a first terminal, calculating a second reference phase angle for current through the first terminal, calculating a second reference voltage across a second CMI by subtracting voltages at the first terminal and a second terminal, and controlling the first CMI and the second CMI for controlling the power flow through the PFC.
    Type: Application
    Filed: August 4, 2016
    Publication date: August 23, 2018
    Inventors: Fang Z. Peng, Shuitao Yang, Deepak Gunasekaran
  • Patent number: 7253574
    Abstract: A switching frequency multiplier inverter for low inductance machines that uses parallel connection of switches and each switch is independently controlled according to a pulse width modulation scheme. The effective switching frequency is multiplied by the number of switches connected in parallel while each individual switch operates within its limit of switching frequency. This technique can also be used for other power converters such as DC/DC, AC/DC converters.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: August 7, 2007
    Inventors: Gui-Jia Su, Fang Z. Peng
  • Patent number: 7130205
    Abstract: An impedance source power converter includes a power source, a main converter circuit and an impedance network. The main converter circuit is coupled to a load and the impedance network couples the power source to the main converter circuit. The impedance network is configured such that the main converter circuit is adapted to perform both buck conversion and boost conversion.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: October 31, 2006
    Assignee: Michigan State University
    Inventor: Fang Z. Peng
  • Patent number: 7126833
    Abstract: An auxiliary quasi-resonant dc tank (AQRDCT) power converter with fast current charging, voltage balancing (or charging), and voltage clamping circuits is provided for achieving soft-switched power conversion. The present invention is an improvement of the invention taught in U.S. Pat. No. 6,111,770, herein incorporated by reference. The present invention provides faster current charging to the resonant inductor, thus minimizing delay time of the pulse width modulation (PWM) due to the soft-switching process. The new AQRDCT converter includes three tank capacitors or power supplies to achieve the faster current charging and minimize the soft-switching time delay. The new AQRDCT converter further includes a voltage balancing circuit to charge and discharge the three tank capacitors so that additional isolated power supplies from the utility line are not needed. A voltage clamping circuit is also included for clamping voltage surge due to the reverse recovery of diodes.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: October 24, 2006
    Assignee: UT-Battelle, LLC
    Inventor: Fang Z. Peng
  • Publication number: 20030231518
    Abstract: An impedance source power converter includes a power source, a main converter circuit and an impedance network. The main converter circuit is coupled to a load and the impedance network couples the power source to the main converter circuit. The impedance network is configured such that the main converter circuit is adapted to perform both buck conversion and boost conversion.
    Type: Application
    Filed: June 10, 2003
    Publication date: December 18, 2003
    Inventor: Fang Z. Peng
  • Patent number: 6111770
    Abstract: An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state.
    Type: Grant
    Filed: October 28, 1997
    Date of Patent: August 29, 2000
    Assignee: Lockheed Martin Energy Research Corporation
    Inventor: Fang Z. Peng