Patents by Inventor Fangming Du

Fangming Du has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9633830
    Abstract: Coating systems suitable for use in generating fluorescent visible light, and lamps provided with such coating systems. The coating systems includes a phosphor-containing coating that contains at least a first phosphor that is predominantly excited by ultraviolet radiation of a first wavelength to emit visible light and absorbs but is less efficiently excited by ultraviolet radiation of a second wavelength. The coating system further includes a second phosphor that absorbs the ultraviolet radiation of the second wavelength and little if any of the ultraviolet radiation of the first wavelength.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: April 25, 2017
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Alok Mani Srivastava, William Winder Beers, Fangming Du, William Erwin Cohen
  • Patent number: 9605199
    Abstract: Blue and green-emitting Eu2+-activated oxyhalide phosphors of formula A-E may be used in devices for lighting or display applications: A. M3SiO3X4:Eu2+; B. M5Si3O9X4:Eu2+; C. M1.64Si0.82O3.1X0.36:Eu2+; D. M10Si3O9X14:Eu2+; E. M2SiO3X2:Eu2+; and wherein M is Ba, Ca, Sr, or a mixture thereof; X is Cl or Br, or a mixture thereof.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: March 28, 2017
    Assignee: General Electric Company
    Inventors: Sam Joseph Camardello, Alok Mani Srivastava, Holly Ann Comanzo, William Winder Beers, Fangming Du, William Erwin Cohen
  • Patent number: 9537061
    Abstract: A phosphor composition is disclosed. A phosphor composition, comprises at least 10 atomic % bromine; silicon, germanium or combination thereof; oxygen; a metal M, wherein M comprises zinc (Zn), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), or combinations thereof; and an activator comprising europium. The phosphor composition is formed from combining carbonate or oxides of metal M, silicon oxide, and europium oxide; and then firing the combination. A lighting apparatus including the phosphor composition is also provided. The phosphor composition may be combined with an additional phosphor to generate white light.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: January 3, 2017
    Assignee: General Electric Company
    Inventors: Alok Mani Srivastava, Holly Ann Comanzo, William Winder Beers, Samuel Joseph Camardello, Fangming Du, William Erwin Cohen
  • Publication number: 20160312114
    Abstract: Processes for preparing color stable Mn4+ doped phosphors include contacting a phosphor of formula I with a fluorine-containing oxidizing agent in gaseous form at temperature ?225° C. to form the color stable Mn4+ doped phosphor A x ? MF y ? : ? Mn 4 + I wherein A is independently at each occurrence Li, Na, K, Rb, Cs, or a combination thereof; M is independently at each occurrence Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the MFy ion; and y is 5, 6 or 7. In another aspect, the processes include contacting a phosphor of formula I at an elevated temperature with an oxidizing agent comprising a C1-C4 fluorocarbon, to form the color stable Mn4+ doped phosphor.
    Type: Application
    Filed: June 30, 2016
    Publication date: October 27, 2016
    Inventors: James Edward Murphy, Fangming Du, Anant Achyut Setlur
  • Publication number: 20160289553
    Abstract: A method includes obtaining particles of a phosphor precursor of formula Ax[MFy]:Mn4+, reducing sizes of the particles of the phosphor precursor by wet milling the particles and annealing the particles that are wet milled by contacting the particles with a fluorine-containing oxidizing agent. Additionally, a manganese doped complex fluoride phosphor prepared by this method is provided. A lighting apparatus and backlight device that include manganese-doped phosphor prepared by this method also are provided.
    Type: Application
    Filed: June 2, 2016
    Publication date: October 6, 2016
    Inventors: William Winder BEERS, Jianmin HE, Fangming DU, James Edward MURPHY, William Erwin COHEN, Clark David NELSON, Cynthia Susan LINK
  • Patent number: 9404034
    Abstract: Coating systems suitable for use in fluorescent lamps, particularly as scattering agents within a UV-reflecting coating for the purpose of improving fluorescent lamp luminosity. Such a coating system is provided on a transparent or translucent substrate and includes a phosphor coating and a scattering agent that scatters UV rays. The scattering agent includes an inorganic powder present in a separate UV-reflecting layer adjacent the phosphor coating and/or dispersed in the phosphor coating so that the scattered UV rays are absorbed by the phosphor coating and cause the phosphor coating to emit visible light. The inorganic powder exhibits low or no absorption to UV rays having wavelengths of 185 nm and 254 nm and is not reactive with mercury.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: August 2, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Fangming Du, Alok Mani Srivastava, William Winder Beers, William Erwin Cohen
  • Patent number: 9388336
    Abstract: A process for preparing a color stable Mn4+ doped complex fluoride phosphor of formula I includes Ax(M(1?m), Mnm)Fy??(I) contacting a first aqueous HF solution comprising (1?m) parts of a compound of formula HxMFy, and a second aqueous HF solution comprising m*n parts of a compound of formula Ax[MnFy], with a third aqueous HF solution comprising (1?n) parts of the compound of formula Ax[MnFy] and a compound of formula AaX, to yield a precipitate comprising the color stable Mn4+ doped complex fluoride phosphor; wherein A is Li, Na, K, Rb, Cs, NR4 or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; R is H, lower alkyl, or a combination thereof; X is an anion; a is the absolute value of the charge of the X anion; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7; 0<m?0.05; 0.1?n?1.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: July 12, 2016
    Assignee: General Electric Company
    Inventors: James Edward Murphy, William Winder Beers, Robert Joseph Lyons, Fangming Du
  • Publication number: 20160172549
    Abstract: A phosphor composition is disclosed. A phosphor composition, comprises at least 10 atomic % bromine; silicon, germanium or combination thereof; oxygen; a metal M, wherein M comprises zinc (Zn), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), or combinations thereof; and an activator comprising europium. The phosphor composition is formed from combining carbonate or oxides of metal M, silicon oxide, and europium oxide; and then firing the combination. A lighting apparatus including the phosphor composition is also provided. The phosphor composition may be combined with an additional phosphor to generate white light.
    Type: Application
    Filed: December 12, 2014
    Publication date: June 16, 2016
    Inventors: Alok Mani Srivastava, Holly Ann Comanzo, William Winder Beers, Samuel Joseph Camardello, Fangming Du, William Erwin Cohen
  • Publication number: 20160168457
    Abstract: A phosphor composition is presented. The phosphor composition includes a first phosphor that includes a phase of general formula (I): L3ZO4(Br2-nXn):Eu2+?? (I) wherein 0?n?1; L is Zn, Mg, Ca, Sr, Ba, or combinations thereof; Z is Si, Ge, or a combination thereof; and X is F, Cl, I, or combinations thereof. A lighting apparatus that includes a light source and the phosphor composition radiationally coupled to the light source is also presented.
    Type: Application
    Filed: June 23, 2015
    Publication date: June 16, 2016
    Inventors: Samuel Joseph Camardello, Alok Mani Srivastava, Fangming Du, Holly Ann Comanzo, William Winder Beers, William Erwin Cohen
  • Publication number: 20160115382
    Abstract: A process for preparing a Mn+4 doped phosphor of formula I Ax[MFy]:Mn+4?? I includes gradually adding a first solution to a second solution and periodically discharging the product liquor from the reactor while volume of the product liquor in the reactor remains constant; wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7. The first solution includes a source of M and HF and the second solution includes a source of Mn to a reactor in the presence of a source of A.
    Type: Application
    Filed: November 24, 2015
    Publication date: April 28, 2016
    Inventors: Fangming Du, William Winder Beers, William Erwin Cohen, Clark David Nelson, Jenna Marie Novak, John Matthew Root, James Edward Murphy, Srinivas Prasad Sista
  • Publication number: 20160079053
    Abstract: Phosphor-containing coating compositions and methods capable of changing the lumen maintenance characteristics of phosphor-containing coatings and fluorescent lamps that utilize such coatings. Lumen maintenance of a fluorescent lamp can be modified by forming a phosphor-containing coating to contain at least a first phosphor that depreciates during operation of the fluorescent lamp, and forming the phosphor-containing coating to further contain an additive composition in a sufficient amount and sufficiently uniformly distributed in the phosphor-containing coating to inhibit depreciation of the first phosphor during operation of the fluorescent lamp.
    Type: Application
    Filed: September 16, 2014
    Publication date: March 17, 2016
    Inventors: Jon Bennett JANSMA, William Winder BEERS, William Erwin COHEN, Fangming DU
  • Publication number: 20160064203
    Abstract: Coating systems suitable for use in generating fluorescent visible light, and lamps provided with such coating systems. The coating systems includes a phosphor-containing coating that contains at least a first phosphor that is predominantly excited by ultraviolet radiation of a first wavelength to emit visible light and absorbs but is less efficiently excited by ultraviolet radiation of a second wavelength. The coating system further includes a second phosphor that absorbs the ultraviolet radiation of the second wavelength and little if any of the ultraviolet radiation of the first wavelength.
    Type: Application
    Filed: August 28, 2014
    Publication date: March 3, 2016
    Inventors: Alok Mani SRIVASTAVA, William Winder BEERS, Fangming DU, William Erwin COHEN
  • Patent number: 9269559
    Abstract: Phosphor-containing coating compositions and methods capable of changing the lumen maintenance characteristics of phosphor-containing coatings and fluorescent lamps that utilize such coatings. Lumen maintenance of a fluorescent lamp can be modified by forming a phosphor-containing coating to contain at least a first phosphor that depreciates during operation of the fluorescent lamp, and forming the phosphor-containing coating to further contain an additive composition in a sufficient amount and sufficiently uniformly distributed in the phosphor-containing coating to inhibit depreciation of the first phosphor during operation of the fluorescent lamp.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: February 23, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Jon Bennett Jansma, William Winder Beers, William Erwin Cohen, Fangming Du
  • Patent number: 9142397
    Abstract: Described are methods and apparatus for providing fluorescent lamps having a two-layer phosphor coating that includes a base coating and a top coating that economically provides a high color rendering index (CRI) of at least 87 with improved brightness. In an embodiment, a low-pressure discharge lamp includes a light transmissive envelope having a basecoat phosphor layer disposed on an inner surface, wherein the basecoat phosphor layer includes less than ten percent weight of a rare earth phosphor. Also included is a topcoat phosphor layer on a surface of the base coat phosphor layer that includes a blend of at least red, green, green-blue and blue emitting rare earth phosphors, and a fill gas composition within the light transmissive envelope.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: September 22, 2015
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Fangming Du, Heidi M. Anderson, William Erwin Cohen, Stephen Lloyd Killion, Adam Jason Burns
  • Patent number: 9117650
    Abstract: A coating system for a fluorescent lamp, and fluorescent lamps provided therewith. The coating system includes a phosphor-containing coating containing a mixture of phosphors that contain less than 10% weight rare earth phosphors. The phosphor-containing coating emits visible light having a color rendering index of at least 87 when excited by UV radiation.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: August 25, 2015
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Fangming Du, Brett R. Bradley, William Erwin Cohen, Nathaniel Jon Farkas, Clark David Nelson
  • Publication number: 20150166887
    Abstract: A process for preparing a color stable Mn4+ doped complex fluoride phosphor of formula I includes Ax(M(1?m),Mnm)Fy??(I) contacting a first aqueous HF solution comprising (1?m) parts of a compound of formula HxMFy, and a second aqueous HF solution comprising m*n parts of a compound of formula Ax[MnFy], with a third aqueous HF solution comprising (1?n) parts of the compound of formula Ax[MnFy] and a compound of formula AaX, to yield a precipitate comprising the color stable Mn4+ doped complex fluoride phosphor; wherein A is Li, Na, K, Rb, Cs, NR4 or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; R is H, lower alkyl, or a combination thereof; X is an anion; a is the absolute value of the charge of the X anion; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7; 0<m?0.05; 0.1?n?1.
    Type: Application
    Filed: December 12, 2014
    Publication date: June 18, 2015
    Inventors: James Edward Murphy, William Winder Beers, Robert Joseph Lyons, Fangming Du
  • Patent number: 9018830
    Abstract: A fluorescent lamp is provided including a phosphor blend comprising less than about 10% by weight rare earth phosphor, based on the total weight of the phosphor composition. This phosphor blend, when coated on a lamp, provides a lamp that exhibits high color rendering index (CRI), of at least 87, while simultaneously achieving low CCT, of less than about 4500K, i.e. of between about 3000K and 4500K. The phosphor system provided includes a non-rare earth strontium red broad band phosphor, a non-rare earth blue broad band halophosphor, and a rare earth-doped green-blue emitting phosphor, more specifically, a combination of SAR and blue-halo non-rare earth phosphors, and less than 20 wt % BAMn phosphor, based on the total weight of the phosphor system.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: April 28, 2015
    Assignee: General Electric Company
    Inventors: Fangming Du, William Winder Beers, Jon Bennett Jansma, William Erwin Cohen
  • Patent number: 8987984
    Abstract: A fluorescent lamp includes a phosphor composition comprising: Y2O3:Eu3+ (YEO); at least one of LaPO4:Ce3+, Tb3+ (LAP), MgAl11O19:Ce3+, Tb3+ (CAT) or GdMgB5O10:Ce3+, Tb3+ (CBT); a special BAMn phosphor, (Ba,Sr,Ca)(Mg1-xMnx)Al10O17:Eu2+, with a specific amount of Mn (x) as disclosed herein, and optionally halophosphor, with the proviso that there is no BaMgAl10O17:Eu2+ (BAM).
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: March 24, 2015
    Assignee: General Electric Company
    Inventors: William Erwin Cohen, Fangming Du, William Beers, Jon Bennett Jansma
  • Publication number: 20150054399
    Abstract: Coating systems suitable for use in fluorescent lamps, particularly as scattering agents within a UV-reflecting coating for the purpose of improving fluorescent lamp luminosity. Such a coating system is provided on a transparent or translucent substrate and includes a phosphor coating and a scattering agent that scatters UV rays. The scattering agent includes an inorganic powder present in a separate UV-reflecting layer adjacent the phosphor coating and/or dispersed in the phosphor coating so that the scattered UV rays are absorbed by the phosphor coating and cause the phosphor coating to emit visible light. The inorganic powder exhibits low or no absorption to UV rays having wavelengths of 185 nm and 254 nm and is not reactive with mercury.
    Type: Application
    Filed: December 23, 2013
    Publication date: February 26, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Fangming DU, Alok Mani SRIVASTAVA, William Winder BEERS, William Erwin COHEN
  • Patent number: 8866372
    Abstract: Mercury vapor discharge fluorescent lamps are provided. The lamp can include a lamp envelope enclosing a discharge space and having an inner surface. First and second electrodes can be positioned on the lamp, such as on opposite ends of the lamp envelope. An ionizable medium that includes mercury and an inert gas can be within said lamp envelope. A phosphor layer can be on the inner surface of the lamp envelope. The phosphor layer generally includes a phosphor blend of a calcium halophosphor, a blue phosphor having an emission peak at about 440 nm to about 490 nm, a blue-green phosphor having an emission peak at about 475 nm to about 530 nm, and a red phosphor having an emission peak at about 600 nm to about 650 nm.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: October 21, 2014
    Assignee: General Electric Company
    Inventors: William Winder Beers, Jon Bennett Jansma, Fangming Du, William Erwin Cohen, Alok Mani Srivastava, Samuel Joseph Camardello, Holly Ann Comanzo