Patents by Inventor Fangming TANG

Fangming TANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11929488
    Abstract: The present invention relates to a hydrogen storage alloy, an electrode for a Ni-MH battery, a secondary battery, and a method for preparing the hydrogen storage alloy. The chemical composition of the hydrogen storage alloy is expressed by the general formula La(3.0˜3.2)xCexZrySm(1-(4.11˜4.2)x-y)NizCouMnvAlw, where x, y, z, u, v, w are molar ratios, and 0.14?x?0.17, 0.02?y?0.03, 4.60?z+u+v+w?5.33, 0.10?u?0.20, 0.25?v?0.30, and 0.30?w?0.40. The atomic ratio of the metal lanthanum (La) to the metal cerium (Ce) is fixed at 3.0 to 3.2, which satisfies the requirements of the overcharge performance of the electrode material. A side elements are largely substituted by samarium (Sm) element, that is, the atomic ratio of Sm on the A side is 25.6% to 42%, so as to solve the problem of shortened cycle life caused by the small amount of cobalt (Co) atoms.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: March 12, 2024
    Assignees: South China University of Technology, Sihui Dabowen Industrial Co., Ltd., Guangdong Research Institute of Rare-Metal
    Inventors: Liuzhang Ouyang, Cheng Tan, Min Zhu, De Min, Hui Wang, Tongzhao Luo, Fangming Xiao, Renheng Tang
  • Publication number: 20240052529
    Abstract: A high-strength thermal-stability polyester industrial yarn is prepared by spinning, winding and coordination treatment of a modified polyester after a solid-state polycondensation; wherein the method of coordination treatment comprises: soaking the wound fiber in an aqueous solution of a coordination agent, and the concentration of the aqueous solution of the coordination agent is 0.1-0.2 mol/L; wherein the condition of coordination treatment is 48-72 hours at 80-100° C., and the concentration of the aqueous solution of the coordination agent is 0.1-0.2 mol/L; wherein the polyester segments of the prepared high-strength thermal-stability polyester industrial yarn comprises a terephthalic acid segment, an ethylene glycol segment and a 2,6-pyridinedicarboxylic acid segment, and 2,6-pyridinedicarboxylic acid segments of different polyester segments are coordinated by Fe3+, the molar ratio of the terephthalic acid segment to the 2,6-pyridinedicarboxylic acid segment is 1:(0.03-0.05).
    Type: Application
    Filed: August 25, 2021
    Publication date: February 15, 2024
    Applicant: JIANGSU HENGLI CHEMICAL FIBRE CO., LTD.
    Inventors: Shanshui WANG, Fangming TANG, Lili WANG, Yiwei SHAO, Yanli ZHAO, Xiaoyu WANG, Chaoming YANG
  • Publication number: 20240052532
    Abstract: A low-thermal-shrinkage polyester industrial yarn and preparation method thereof are provided. The low-thermal-shrinkage polyester industrial yarn is prepared by spinning and winding a modified polyester after solid-state polycondensation to increase viscosity. The preparation method of the modified polyester includes: after uniformly mixing terephthalic acid, ethylene glycol, 2,5-pyridinedicarboxylic acid and copper chloride, successively performing an esterification reaction and a polycondensation reaction to obtain the modified polyester. The polyester segments of the prepared low-thermal-shrinkage polyester industrial yarn comprises a terephthalic acid segment, an ethylene glycol segment and a 2,5-pyridinedicarboxylic acid segment, and 2,5-pyridinedicarboxylic acid segments of different polyester segments are coordinated by Cu2+. The molar ratio of the terephthalic acid segment to the 2,5-pyridinedicarboxylic acid segment is 1:(0.03-0.05).
    Type: Application
    Filed: August 25, 2021
    Publication date: February 15, 2024
    Applicant: JIANGSU HENGLI CHEMICAL FIBRE CO., LTD.
    Inventors: Rui CHEN, Lili WANG, Shanshui WANG, Damao YANG, Ye ZHANG, Xiaohua SUN, Fangming TANG, Tong WANG
  • Publication number: 20230392300
    Abstract: A high-strength creep-resistant polyester industrial yarn and preparation method thereof are provided. The high-strength creep-resistant polyester industrial yarn is prepared by spinning, winding and coordination treatment of a modified polyester after solid-state polycondensation to increase viscosity. The condition of coordination treatment is 60-72 hours at 80-100° C. The coordination agent is AgNO3, FeCl2, CuCl2, or NiCl2. The polyester segments of the prepared high-strength creep-resistant polyester industrial yarn includes a terephthalic acid segment, an ethylene glycol segment and a 2-(4-pyridine) terephthalic acid segment, and 2-(4-pyridine) terephthalic acid segments of different polyester segments are coordinated by metal ions (Ag+, Fe2+, Cu2+ or Ni2). The molar ratio of the terephthalic acid segment to the 2-(4-pyridine) terephthalic acid segment is 1:(0.03-0.05). The N atom on the pyridine of the 2-(4-pyridine) terephthalic acid segment is involved in coordination.
    Type: Application
    Filed: August 24, 2021
    Publication date: December 7, 2023
    Applicant: JIANGSU HENGLI CHEMICAL FIBRE CO., LTD.
    Inventors: Fangming TANG, Shanshui WANG, Lili WANG, Ye ZHANG, Cunhong WEI, Yumei ZHANG, Yanli ZHAO
  • Patent number: 11702768
    Abstract: A preparation method of self-crimping elastic combined filament yarns for knitting is disclosed, wherein the combined filament yarns are extruded from the same spinneret; a first fiber-forming polymer melt is divided into two ways, one is directly extruded after distribution; and the other is extruded after distribution by side-by-side composite spinning together with a second fiber-forming polymer melt; the first fiber-forming polymer and the second fiber-forming polymer are compatible or partially compatible; on the same spinneret, a ratio of the number of spinneret holes m for direct extrusion to the number of spinneret holes n for extrusion after distribution by side-by-side composite spinning is 1:(5-10); the self-crimping elastic combined filament yarns for knitting are prepared according to specific spinning processes, wherein the combined filament yarn mainly comprises a first fiber-forming polymer monofilament and a first/second fiber-forming polymer side-by-side composite monofilament; wherein the m
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: July 18, 2023
    Assignee: JIANGSU HENGLI CHEMICAL FIBRE CO., LTD.
    Inventors: Hongwei Fan, Fangming Tang, Shanshui Wang, Lixin Yin, Lili Wang
  • Patent number: 11686018
    Abstract: A degradable polyester fiber and its preparation method are disclosed. The preparation method is to cool a PET melt dispersing with doped ZrO2 powder by ring-blowing after extruded from a trilobal spinneret hole on a spinneret, and manufacture a fully drawn yarn (FDY) according to an FDY process with the PET melt, then the degradable polyester fiber is prepared after a relaxation heat treatment. The trilobal spinneret hole on the spinneret has three leaves with unequal lengths and angles, and all the trilobal spinneret holes are distributed in concentric circles, with a center line of the leaf opposite to the smallest angle in each trilobal spinneret hole passing through the center of the circle, and pointing away from the center of the circle. The process is simple, and the obtain fiber has good performances in degradation and elasticity.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: June 27, 2023
    Assignee: JIANGSU HENGLI CHEMICAL FIBRE CO., LTD.
    Inventors: Shanshui Wang, Hongwei Fan, Fangming Tang, Lili Wang
  • Publication number: 20230040916
    Abstract: A recycled polyester filament and preparation method therefor are disclosed. In the process of preparing a fiber from a recycled polyester according to the FDY process, the ring-blowing is used for cooling, and the distribution of spinneret holes on the spinneret is controlled to meet certain conditions, then the recycled polyester filament is obtained by relaxation heat treatment after a fully drawn yarn is produced. The spinneret holes are C-shaped spinneret holes and circular spinneret holes, the cross-section of the C-shaped spinneret hole is composed of an outer arc, an inner arc, and two line segments, and two endpoints of the outer arc are A and B respectively; wherein the certain conditions include: all the spinneret holes are distributed in concentric circles, and the C-shaped spinneret holes are located on the outermost circle, rotating at different angles and randomly distributed.
    Type: Application
    Filed: June 12, 2020
    Publication date: February 9, 2023
    Applicant: JIANGSU HENGLI CHEMICAL FIBRE CO., LTD.
    Inventors: Hongwei FAN, Shanshui WANG, Lili WANG, Fangming TANG
  • Publication number: 20230030865
    Abstract: A degradable polyester fiber and its preparation method are disclosed. The preparation method is to cool a PET melt dispersing with doped ZrO2 powder by ring-blowing after extruded from a trilobal spinneret hole on a spinneret, and manufacture a fully drawn yarn (FDY) according to an FDY process with the PET melt, then the degradable polyester fiber is prepared after a relaxation heat treatment. The trilobal spinneret hole on the spinneret has three leaves with unequal lengths and angles, and all the trilobal spinneret holes are distributed in concentric circles, with a center line of the leaf opposite to the smallest angle in each trilobal spinneret hole passing through the center of the circle, and pointing away from the center of the circle. The process is simple, and the obtain fiber has good performances in degradation and elasticity.
    Type: Application
    Filed: June 11, 2020
    Publication date: February 2, 2023
    Applicant: JIANGSU HENGLI CHEMICAL FIBRE CO., LTD.
    Inventors: Shanshui WANG, Hongwei FAN, Fangming TANG, Lili WANG
  • Publication number: 20230026569
    Abstract: A type of side-by-side self-crimping elastic fiber and preparation method thereof are disclosed. The preparation method includes distributing compatible or partially compatible first fiber-forming polymer melts and second fiber-forming polymer melts, then the fiber is extruded from first spinneret holes and second spinneret holes on the same spinneret. The first fiber-forming polymer melts and the second fiber-forming polymer melts flow into the first spinneret holes through first and second distribution holes, and flow into the second spinneret holes through third and fourth distribution holes, wherein the four distribution holes are cylindrical holes of equal height, the ratio of the diameter of the first distribution holes to the diameter of the second distribution holes is (1.10-1.20):1, and the ratio of the diameter of the third distribution holes to the diameter of the fourth distribution holes is 1:(1.10-1.20).
    Type: Application
    Filed: June 11, 2020
    Publication date: January 26, 2023
    Applicant: JIANGSU HENGLI CHEMICAL FIBRE CO., LTD.
    Inventors: Hongwei FAN, Lili WANG, Fangming TANG, Aiqi KANG, Shanshui WANG
  • Publication number: 20230026102
    Abstract: A preparation method of self-crimping elastic combined filament yarns for knitting is disclosed, wherein the combined filament yarns are extruded from the same spinneret; a first fiber-forming polymer melt is divided into two ways, one is directly extruded after distribution; and the other is extruded after distribution by side-by-side composite spinning together with a second fiber-forming polymer melt; the first fiber-forming polymer and the second fiber-forming polymer are compatible or partially compatible; on the same spinneret, a ratio of the number of spinneret holes m for direct extrusion to the number of spinneret holes n for extrusion after distribution by side-by-side composite spinning is 1:(5-10); the self-crimping elastic combined filament yarns for knitting are prepared according to specific spinning processes, wherein the combined filament yarn mainly comprises a first fiber-forming polymer monofilament and a first/second fiber-forming polymer side-by-side composite monofilament; wherein the m
    Type: Application
    Filed: June 10, 2020
    Publication date: January 26, 2023
    Applicant: JIANGSU HENGLI CHEMICAL FIBRE CO., LTD.
    Inventors: Hongwei FAN, Fangming TANG, Shanshui WANG, Lixin YIN, Lili WANG
  • Patent number: 11248087
    Abstract: A type of cationic dyeable polyester fiber and preparing method thereof are disclosed. The preparing method is to manufacture a fiber from a cationic modified polyester through a fully drawn yarn (FDY) process, wherein the cationic modified polyester is composed of terephthalic acid segments, ethylene glycol segments, sodium salt of diethylene ester of 5-sulfoisophthalic acid segments and tert-butyl branched diol segments and a molecular formula of tert-butyl branched diol is as following: The cationic modified polyester is further dispersed with a high temperature calcined solid heteropolyacid. A final fiber has a dye uptake of 87.8-92.2% and a K/S value of 23.27-25.67 when dyed at 120° C., as well as an intrinsic viscosity drop of 13-17% when stored at 25° C. and R.H. 65% for 60 months.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: February 15, 2022
    Assignee: JIANGSU HENGLI CHEMICAL FIBRE CO., LTD.
    Inventors: Lili Wang, Xiaoyu Wang, Fangming Tang
  • Patent number: 11174575
    Abstract: A type of high-modulus-low-shrinkage activated PET industrial yarn and preparing method thereof are disclosed. The preparing method is to manufacture filament from a modified polyester, which is the product of the esterification and the successive polycondensation reactions of evenly mixed terephthalic acid, ethylene glycol and tert-butyl branched heptanediol, through a series of processes composed of viscosity enhancing by solid state polycondensation, melting, metering, extruding, cooling, oiling, stretching, heat setting, relaxation heat-treating, oiling with activation oil, winding and pre-activation treatment. The relaxation heat-treating indicates passing the modified polyester yarns through a space with a certain temperature within 200-220° C. under a proper relaxation state; and the proper relaxation state means a 3.0-5.0% of overfeed for the winding.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: November 16, 2021
    Assignee: JIANGSU HENGLI CHEMICAL FIBRE CO., LTD.
    Inventors: Fangming Tang, Shanshui Wang, Damao Yang
  • Patent number: 11174576
    Abstract: A type of easy-to-dye degradable polyester FDY and preparing method thereof are disclosed. The method for preparing an easy-to-dye degradable polyester FDY is to prepare a modified polyester FDY from a modified polyester melt with FDY process; wherein the material is a modified polyester; wherein the modified polyester has a molecular chain structure composed of terephthalic acid segments, ethylene glycol segments, 2,2,3,4,5,5-hexamethyl-3,4-hexanediol segments and tert-butyl branched heptanediol segments; wherein the modified polyester is dispersed by solid heteropolyacid powder calcined at a 400˜700° C. temperature. The preparing method has a simple process, modifying the polyester through solid heteropolyacid, tert-butyl branched heptanediol and 2,2,3,4,5,5-hexamethyl-3,4-hexanediol, which increases the hydrolysis rate of the polyester, improves the dyeing performance and prepares products with excellent mechanical properties.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: November 16, 2021
    Assignee: JIANGSU HENGLI CHEMICAL FIBRE CO., LTD.
    Inventors: Hongwei Fan, Fangming Tang, Shanshui Wang
  • Publication number: 20210309799
    Abstract: A type of cationic dyeable polyester fiber and preparing method thereof are disclosed. The preparing method is to manufacture a fiber from a cationic modified polyester through a fully drawn yarn (FDY) process, wherein the cationic modified polyester is composed of terephthalic acid segments, ethylene glycol segments, sodium salt of diethylene ester of 5-sulfoisophthalic acid segments and tert-butyl branched diol segments and a molecular formula of tert-butyl branched diol is as following: The cationic modified polyester is further dispersed with a high temperature calcined solid heteropolyacid. A final fiber has a dye uptake of 87.8-92.2% and a K/S value of 23.27-25.67 when dyed at 120° C., as well as an intrinsic viscosity drop of 13-17% when stored at 25° C. and R.H. 65% for 60 months.
    Type: Application
    Filed: October 29, 2019
    Publication date: October 7, 2021
    Applicant: JIANGSU HENGLI CHEMICAL FIBRE CO., LTD.
    Inventors: Lili WANG, Xiaoyu WANG, Fangming TANG
  • Publication number: 20210246579
    Abstract: A type of easy-to-dye degradable polyester FDY and preparing method thereof are disclosed. The method for preparing an easy-to-dye degradable polyester FDY is to prepare a modified polyester FDY from a modified polyester melt with FDY process; wherein the material is a modified polyester; wherein the modified polyester has a molecular chain structure composed of terephthalic acid segments, ethylene glycol segments, 2,2,3,4,5,5-hexamethyl-3,4-hexanediol segments and tert-butyl branched heptanediol segments; wherein the modified polyester is dispersed by solid heteropolyacid powder calcined at a 400˜700° C. temperature. The preparing method has a simple process, modifying the polyester through solid heteropolyacid, tert-butyl branched heptanediol and 2,2,3,4,5,5-hexamethyl-3,4-hexanediol, which increases the hydrolysis rate of the polyester, improves the dyeing performance and prepares products with excellent mechanical properties.
    Type: Application
    Filed: October 28, 2019
    Publication date: August 12, 2021
    Applicant: JIANGSU HENGLI CHEMICAL FIBRE CO., LTD.
    Inventors: Hongwei FAN, Fangming TANG, Shanshui WANG
  • Publication number: 20210230776
    Abstract: A type of high-modulus-low-shrinkage activated PET industrial yarn and preparing method thereof are disclosed. The preparing method is to manufacture filament from a modified polyester, which is the product of the esterification and the successive polycondensation reactions of evenly mixed terephthalic acid, ethylene glycol and tert-butyl branched heptanediol, through a series of processes composed of viscosity enhancing by solid state polycondensation, melting, metering, extruding, cooling, oiling, stretching, heat setting, relaxation heat-treating, oiling with activation oil, winding and pre-activation treatment. The relaxation heat-treating indicates passing the modified polyester yarns through a space with a certain temperature within 200-220° C. under a proper relaxation state; and the proper relaxation state means a 3.0-5.0% of overfeed for the winding.
    Type: Application
    Filed: October 28, 2019
    Publication date: July 29, 2021
    Applicant: JIANGSU HENGLI CHEMICAL FIBRE CO., LTD.
    Inventors: Fangming TANG, Shanshui WANG, Damao YANG
  • Patent number: 11035056
    Abstract: A method for improving the quality of a polyester industrial yarn is provided. First, in the cooling process of preparing a polyester industrial yarn prepared by polyester spinning, the longitudinal height is kept unchanged, and the cross-sectional area of the slow cooling chamber is enlarged. The chamber maintains the surface temperature of the spinneret by means of heat preservation, and then uses an oil agent containing 67.30-85.58 wt % crown ether in the oiling process of polyester industrial yarn prepared by polyester spinning. Enlarging the cross-sectional area of the slow-cooling chamber refers to the cross section of the slow cooling chamber is changed from a circular shape to a rectangular shape while keeping the spinneret connected to the slow cooling chamber unchanged. The cleaning cycle of the spinneret is prolonged by 35-45%, the full package rate of polyester industrial yarn is larger than 99%.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: June 15, 2021
    Assignee: JIANGSU HENGLI CHEMICAL FIBRE CO., LTD.
    Inventors: Hongwei Fan, Damao Yang, Ye Zhang, Fangming Tang, Huirong Zhao
  • Patent number: 10982044
    Abstract: A low-shrinkage polyester industrial yarn and a preparation method thereof are provided. The preparation method includes the following steps: subjecting the modified polyester to polycondensation, melting, measuring, extruding, cooling, oiling, stretching, heat setting and winding, wherein the content of the crown ether in the oil agent is 67.30-85.58 wt %. The material of the prepared low shrinkage polyester industrial yarn is a modified polyester, the molecular chain of the modified polyester includes a terephthalic acid segment, an ethylene glycol segment, and a branched diol segment, and the structural formula of the branched diol is as follows: Wherein R1 and R2 are each independently selected from a linear alkylene group having 1-3 carbon atoms, R3 is selected from an alkyl group having 1-5 carbon atoms, and R4 is selected from an alkyl group consisting of 2-5 carbon atoms.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: April 20, 2021
    Assignee: JIANGSU HENGLI CHEMICAL FIBRE CO., LTD.
    Inventors: Hongwei Fan, Yiwei Shao, Lixin Yin, Fangming Tang
  • Patent number: 10822451
    Abstract: A bi-profiled fiber and preparing method thereof are provided. The bi-profiled fiber is manufactured through the steps of spinning melt metering, extruding via the composite spinneret, cooling, oiling, drawing, heat setting and winding, finally containing both double-cross monofilaments and circular monofilaments simultaneously. The bi-profiled fiber is made of the modified polyester, and the modified polyester is dispersed by matte agent and is composed of terephthalic acid segments, ethylene glycol segments and branched diol segments, and the branched diol segment has a structural formula of where R1 and R2 are separately selected from the linear alkylene with 1-3 carbon atoms, R3 from the alkyl with 1-5 carbon atoms, and R4 from the alkyl with 2-5 carbon atoms. The matte agents is a mixture of amorphous titanium dioxide and amorphous silicon dioxide, or a mixture of calcium carbonate and amorphous silicon dioxide.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: November 3, 2020
    Assignee: JIANGSU HENGLI CHEMICAL FIBRE CO., LTD.
    Inventors: Hongwei Fan, Fangming Tang, Lixin Yin, Shanshui Wang
  • Patent number: 10815333
    Abstract: A high-modulus low-shrinkage polyester industrial yarn obtained by subjecting a polyester to dissolution, washing and solid state polycondensation followed by spinning. The high-modulus low-shrinkage polyester industrial yarn has a dry heat shrinkage rate of 2.0±0.25% under test conditions of 177° C.×10 min×0.05 cN/dtex. The average value of the crystal volume Vc of the high-modulus low-shrinkage polyester industrial yarn is larger than 230 nm3. The high-modulus low-shrinkage polyester industrial yarn has a fiber modulus of ?100 cN/dtex. The polycondensation catalyst consists of magnesium ethylene glycol and antimony ethylene glycol, which has a small thermal degradation coefficient.
    Type: Grant
    Filed: June 12, 2016
    Date of Patent: October 27, 2020
    Assignee: JIANGSU HENGLI CHEMICAL FIBRE CO., LTD.
    Inventors: Hongwei Fan, Wengang Li, Yanfang Wang, Lili Wang, Damao Yang, Fangming Tang, Lixin Yin, Guangkun Song