Patents by Inventor Faqiang Guo

Faqiang Guo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230250630
    Abstract: The present application relates to the technical field of architectural engineering. Disclosed are a slab joint leakage-proof structure of a prefabricated roof panel, a prefabricated roof panel and a prefabricated roof panel system. The slab joint leakage-proof structure comprises a first leakage-proof layer. The first leakage-proof layer comprises two flexible structures which abut against each other and are arranged at the joint of a main rib on the long side of the roof panel and a main rib on the long side of an adjacent roof panel. Either of the flexible structures comprises a main body portion sealably attached to the main rib, and at least one protruding portion which is fixedly disposed on the main body portion, protrudes and extends into the joint, and can tightly abut against the other flexible structure. The protruding portions of the two flexible structures can enclose an air cavity layer sealably isolated from the outside.
    Type: Application
    Filed: October 9, 2021
    Publication date: August 10, 2023
    Applicant: CHINA CONSTRUCTION SCIENCE AND INDUSTRY CORPORATION LTD.
    Inventors: Xiaokang HUANG, Weizheng KONG, Ling CHEN, Guangyuan PAN, Shuai LI, Zehao CHENG, Faqiang GUO
  • Publication number: 20080202649
    Abstract: Composite phase structure of early transition metal-based metallic alloys, including those of crystalline, quasicrystalline and amorphous phases, can be obtained in a controllable way upon direct (in-situ) cooling (solidification) of the alloy, realized either by adjusting the alloy compositions at a fixed cooling rate or by changing the cooling rates for a given alloy composition. Some embodiments are based on the addition of later transition metals, mainly of Cu with Ni or Fe with Co in early transition metal based (mainly Ti and Zr or Hf and Nb) metallic alloys. If cooling rate is on the scale of 103° C./s, a wholly amorphous structure is obtained for most of the compositions. At reduced cooling rates, composite structures with different kinds of phases can be achieved, as illustrated graphically in FIG. 1. Nickel addition promotes the formation of quasicrystalline phases, especially for Ti-rich alloy compositions with beryllium.
    Type: Application
    Filed: June 13, 2006
    Publication date: August 28, 2008
    Inventors: Faqiang Guo, S. Joseph Poon, Gary J. Shiflet
  • Publication number: 20070137737
    Abstract: The present invention relates to novel calcium based amorphous alloys with high thermal stability and low mass density represented by the general formula: CaAlQ, wherein Q represents one or more elements selected from the group consisting of Cu, Ag, Zn and Mg. Typically, the atomic percentage of the calcium is about 50%.
    Type: Application
    Filed: May 27, 2004
    Publication date: June 21, 2007
    Inventors: Faqiang Guo, S. Joseph Poon, Gary Shiflet