Patents by Inventor Faraón Torres

Faraón Torres has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10350878
    Abstract: A system for additively manufacturing a composite part comprises a delivery guide, movable relative to a surface. The delivery guide is configured to deposit at least a segment of a continuous flexible line along a print path. The continuous flexible line comprises a non-resin component and a thermosetting-resin component. The thermosetting-resin component comprises a first part and a second part. The non-resin component comprises a first element and a second element. The system further comprises a first resin-part applicator, configured to apply the first part to the first element, and a second resin-part applicator, configured to apply the second part to the second element. The system also comprises a feed mechanism, configured to pull the first element through the first resin-part applicator, to pull the second element through the second resin-part applicator, and to push the continuous flexible line out of the delivery guide.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: July 16, 2019
    Assignee: The Boeing Company
    Inventors: Nick S. Evans, Faraòn Torres, Ryan G. Ziegler, Samuel F. Harrison, Ciro J. Grijalva, III, Hayden S. Osborn
  • Patent number: 10343355
    Abstract: A system for additively manufacturing a composite part (102) comprises a delivery guide, movable relative to a surface. The delivery guide is configured to deposit at least a segment of a continuous flexible line along a print path. The continuous flexible line comprises a non-resin component and a thermosetting resin component that comprises a first part and a second part of a thermosetting resin. The print path is stationary relative to the surface. The delivery guide comprises a first inlet configured to receive the non-resin component, and a second inlet configured to receive at least the first part of the thermosetting resin. The delivery guide is further configured to apply the first part and the second part of the thermosetting resin to the non-resin component. The system 100 further comprises a feed mechanism, configured to push the continuous flexible line out of the delivery guide.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: July 9, 2019
    Assignee: The Boeing Company
    Inventors: Nick S. Evans, Faraón Torres, Ryan G. Ziegler, Samuel F. Harrison, Ciro J. Grijalva, III, Hayden S. Osborn
  • Patent number: 10343330
    Abstract: A system for additively manufacturing a composite part is disclosed. The system comprises a delivery guide, movable relative to a surface. The delivery guide is configured to deposit at least a segment of a continuous flexible line along a print path. The print path is stationary relative to the surface. The continuous flexible line comprises a non-resin component and a thermosetting-epoxy-resin component that is partially cured. The system also comprises a feed mechanism, configured to push the continuous flexible line through the delivery guide. The system further comprises a cooling system, configured to maintain the thermosetting-epoxy-resin component of the continuous flexible line below a threshold temperature prior to depositing the segment of the continuous flexible along the print path via the delivery guide.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: July 9, 2019
    Assignee: The Boeing Company
    Inventors: Nick S. Evans, Faraón Torres, Ryan G. Ziegler, Samuel F. Harrison, Ciro J. Grijalva, III, Hayden S. Osborn
  • Patent number: 10279580
    Abstract: A method of additively manufacturing a composite part comprises depositing a segment of a continuous flexible line along a print path. The continuous flexible line comprises a non-resin component and further comprises a photopolymer-resin component that is uncured. The method further comprises delivering a predetermined or actively determined amount of curing energy at least to a portion of the segment of the continuous flexible line at a controlled rate while advancing the continuous flexible line toward the print path and after the segment of the continuous flexible line is deposited along the print path to at least partially cure at least the portion of the segment of the continuous flexible line.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: May 7, 2019
    Assignee: The Boeing Company
    Inventors: Nick S. Evans, Faraón Torres, Ryan G. Ziegler, Samuel F. Harrison, Ciro J. Grijalva, III, Hayden S. Osborn
  • Publication number: 20190091929
    Abstract: An extruder for depositing a material includes an extruder body including an extruder drive system and defining a body axis, and an extruder nozzle. The extruder nozzle includes a nozzle tip defining an exit orifice, a reconfigurable arm defining a material path in fluid communication with the exit orifice, the reconfigurable arm including a proximal end coupled to the extruder body and coaxial with the body axis, and a distal end coupled to the nozzle tip, and a plurality of actuators operatively associated with the reconfigurable arm and configured to move the reconfigurable arm between an initial configuration, in which the distal end of the reconfigurable arm is coaxial with the body axis, to a displaced configuration. In the displaced configuration, the distal end of the reconfigurable arm is at least one of positioned offset from the body axis and oriented at an angle relative to the body axis.
    Type: Application
    Filed: September 27, 2017
    Publication date: March 28, 2019
    Applicant: The Boeing Company
    Inventors: Samuel Harrison, Nick S. Evans, Faraon Torres, Michael P. Kozar, Mark S. Wilenski
  • Publication number: 20190084286
    Abstract: A feedstock line (100) comprises elongate filaments (104), a resin (124), and a full-length optical waveguide (102), comprising a full-length optical core (110). The full-length optical waveguide (102) is configured such that when electromagnetic radiation (118) enters the full-length optical core (110) via at least one of a first full-length-optical-core end face (112), a second full-length-optical-core end face (114), or a full-length peripheral surface (116) that extends between the first full-length-optical-core end face (112) and the second full-length-optical-core end face (114), at least a portion of the electromagnetic radiation (118) exits the full-length optical core (110) via the full-length peripheral surface (116) to irradiate, in an interior volume (182) of the feedstock line (100), the resin (124) that, due at least in part to the elongate filaments (104), is not directly accessible to the electromagnetic radiation (118), incident on the exterior surface (180) of the feedstock line (100).
    Type: Application
    Filed: September 15, 2017
    Publication date: March 21, 2019
    Inventors: Mark Stewart Wilenski, Michael Patrick Kozar, Samuel F. Harrison, Nick Shadbeh Evans, Faraón Torres
  • Publication number: 20190084251
    Abstract: A feedstock line (100) comprises elongate filaments (104), a resin (124), and optical direction modifiers (123). The resin (124) covers the elongate filaments (104). The optical direction modifiers (123) are covered by the resin (124) and are interspersed among the elongate filaments (104). Each of the optical direction modifiers (123) has an outer surface (184). Each of the optical direction modifiers (123) is configured such that when electromagnetic radiation (118) strikes the outer surface (184) from a first direction, at least a portion of the electromagnetic radiation (118) departs the outer surface (184) in a second direction that is at an angle to the first direction to irradiate, in the interior volume of the feedstock line (100), the resin (124) that, due at least in part to the elongate filaments (104), is not directly accessible to the electromagnetic radiation (118), incident on the exterior surface of the feedstock line.
    Type: Application
    Filed: September 15, 2017
    Publication date: March 21, 2019
    Inventors: Mark Stewart Wilenski, Michael Patrick Kozar, Samuel F. Harrison, Nick Shadbeh Evans, Faraón Torres
  • Publication number: 20190084242
    Abstract: A feedstock line (100) comprises elongate filaments (104), a resin (124), and a full-length optical waveguide (102), comprising a full-length optical core (110). The full-length optical waveguide (102) is configured such that when electromagnetic radiation (118) enters the full-length optical core (110) via at least one of a first full-length-optical-core end face (112), a second full-length-optical-core end face (114), or a full-length peripheral surface (116) that extends between the first full-length-optical-core end face (112) and the second full-length-optical-core end face (114), at least a portion of the electromagnetic radiation (118) exits the full-length optical core (110) via the full-length peripheral surface (116) to irradiate, in an interior volume (182) of the feedstock line (100), the resin (124) that, due at least in part to the elongate filaments (104), is not directly accessible to the electromagnetic radiation (118), incident on the exterior surface (180) of the feedstock line (100).
    Type: Application
    Filed: September 15, 2017
    Publication date: March 21, 2019
    Inventors: Mark Stewart Wilenski, Michael Patrick Kozar, Samuel F. Harrison, Nick Shadbeh Evans, Faraón Torres
  • Publication number: 20190084243
    Abstract: A system (700) for additively manufacturing an object (136) comprises feedstock-line supply (702), delivery guide (704), and curing mechanism (706). The feedstock-line supply (702) dispenses a feedstock line (100) that comprises elongate fibers (104), a resin (124) that covers the elongate fibers (104), and at least one optical modifier (123) that is interspersed among the elongate filaments (104). The delivery guide (704) is movable relative to a surface (708), receives the feedstock line (100), and deposits it along a print path (705). The curing mechanism (706) is directs electromagnetic radiation (118) at the exterior surface (180) of the feedstock line (100) after it is deposited along the print path (705).
    Type: Application
    Filed: September 15, 2017
    Publication date: March 21, 2019
    Inventors: Mark Stewart Wilenski, Michael Patrick Kozar, Samuel F. Harrison, Nick Shadbeh Evans, Faraón Torres
  • Publication number: 20190084223
    Abstract: A feedstock line (100) comprises elongate filaments (104), a resin (124), and a full-length optical waveguide (102), comprising a full-length optical core (110). The full-length optical waveguide (102) is configured such that when electromagnetic radiation (118) enters the full-length optical core (110) via at least one of a first full-length-optical-core end face (112), a second full-length-optical-core end face (114), or a full-length peripheral surface (116) that extends between the first full-length-optical-core end face (112) and the second full-length-optical-core end face (114), at least a portion of the electromagnetic radiation (118) exits the full-length optical core (110) via the full-length peripheral surface (116) to irradiate, in an interior volume (182) of the feedstock line (100), the resin (124) that, due at least in part to the elongate filaments (104), is not directly accessible to the electromagnetic radiation (118), incident on the exterior surface (180) of the feedstock line (100).
    Type: Application
    Filed: September 15, 2017
    Publication date: March 21, 2019
    Inventors: Mark Stewart Wilenski, Michael Patrick Kozar, Samuel F. Harrison, Nick Shadbeh Evans, Faraón Torres
  • Patent number: 10232550
    Abstract: A system for additively manufacturing a composite part comprises a delivery assembly, a feed mechanism, and a source of curing energy. The delivery assembly comprises a delivery guide movable relative to a surface and is configured to deposit a continuous flexible line along a print path. The delivery assembly further comprises a first inlet, configured to receive a non-resin component, and a second inlet, configured to receive a photopolymer resin. The delivery assembly applies the photopolymer resin to the non-resin component. The feed mechanism pushes the continuous flexible line out of the delivery guide. The source of the curing energy delivers the curing energy to a portion of the continuous flexible line after it exits the delivery guide.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: March 19, 2019
    Assignee: The Boeing Company
    Inventors: Nick S. Evans, Faraón Torres, Ryan G. Ziegler, Samuel F. Harrison, Ciro J. Grijalva, III, Hayden S. Osborn
  • Patent number: 10232570
    Abstract: A system for additively manufacturing a composite part comprises a delivery guide and a surface, at least one of which is movable relative to another. The delivery guide is configured to deposit at least a segment of a continuous flexible line along a print path. The print path is stationary relative to the surface. The continuous flexible line comprises a non-resin component and a photopolymer-resin component that is partially cured. The system further comprises a feed mechanism configured to push the continuous flexible line through the delivery guide. The system further comprises a source of a curing energy. The source is configured to deliver the curing energy at least to a portion of the segment of the continuous flexible line after the segment of the continuous flexible line exits the delivery guide.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: March 19, 2019
    Assignee: The Boeing Company
    Inventors: Nick S. Evans, Faraón Torres, Ryan G. Ziegler, Samuel F. Harrison, Ciro J. Grijalva, III, Hayden S. Osborn
  • Patent number: 10201941
    Abstract: A system comprises a delivery guide movable relative to a surface. The delivery guide is configured to deposit a continuous flexible line along a print path that is stationary relative to the surface. The system further comprises a vessel, configured to hold a volume of a liquid photopolymer resin and to apply a quantity of the liquid photopolymer resin to the non-resin component to create the continuous flexible line. The system further comprises a feed mechanism, configured to pull the non-resin component through the vessel and to push the continuous flexible line out of the delivery guide. The system further comprises a source of curing energy. The source is configured to deliver the curing energy at least to a portion of the segment of the continuous flexible line after the segment of the continuous flexible line exits the delivery guide.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: February 12, 2019
    Assignee: The Boeing Company
    Inventors: Nick S. Evans, Faraón Torres, Ryan G. Ziegler, Samuel F. Harrison, Ciro J. Grijalva, III, Hayden S. Osborn
  • Patent number: 10195784
    Abstract: A system for additively manufacturing a composite part comprises a delivery guide, movable relative to a surface. The delivery guide is configured to deposit at least a segment of a continuous flexible line along a print path. The continuous flexible line comprises a non-resin component and a thermosetting-resin component. The thermosetting-resin component comprises a first part and a second part. The system further comprises a first resin-part applicator, configured to apply a first quantity of the first part to the non-resin component, and a second resin-part applicator, configured to apply a second quantity of the second part to the first quantity of the first part of a thermosetting resin, applied to the non-resin component. The system also comprises a feed mechanism, configured to pull the non-resin component through the first resin-part applicator and the second resin-part applicator, and to push the continuous flexible line out of the delivery guide.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: February 5, 2019
    Assignee: The Boeing Company
    Inventors: Nick S. Evans, Faraón Torres, Ryan G. Ziegler, Samuel F. Harrison, Ciro J. Grijalva, III, Hayden S. Osborn
  • Patent number: 10189242
    Abstract: A method of additively manufacturing a composite part is disclosed. The method comprises depositing a segment of a continuous flexible line along a print path. The continuous flexible line comprises a non-resin component and a thermosetting resin component that is not fully cured. The method further comprises, while advancing the continuous flexible line toward the print path, delivering a predetermined or actively determined amount of curing energy at least to a portion of the segment of the continuous flexible line at a controlled rate after the segment of the continuous flexible line is deposited along the print path to at least partially cure at least the portion of the segment of the continuous flexible line.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: January 29, 2019
    Assignee: The Boeing Company
    Inventors: Nick S. Evans, Faraón Torres, Ryan G. Ziegler, Samuel F. Harrison, Ciro J. Grijalva, III, Hayden S. Osborn
  • Patent number: 10189241
    Abstract: A method of additively manufacturing a composite part is disclosed. The method comprises pushing a continuous flexible line through a delivery guide. The continuous flexible line comprises a non-resin component and a thermosetting-epoxy-resin component that is partially cured. The method also comprises depositing, via the delivery guide, a segment of the continuous flexible line along a print path. The method further comprises maintaining the thermosetting-epoxy-resin component of at least the continuous flexible line being pushed through the delivery guide below a threshold temperature prior to depositing the segment of the continuous flexible line along the print path.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: January 29, 2019
    Assignee: The Boeing Company
    Inventors: Nick S. Evans, Faraón Torres, Ryan G. Ziegler, Samuel F. Harrison, Ciro J. Grijalva, III, Hayden S. Osborn
  • Patent number: 10189237
    Abstract: A feedstock line comprises elongate filaments, a resin, and optical direction modifiers. The resin covers the elongate filaments. The optical direction modifiers are covered by the resin and are interspersed among the elongate filaments. Each of the optical direction modifiers has an outer surface. Each of the optical direction modifiers is configured such that when electromagnetic radiation strikes the outer surface from a first direction, at least a portion of the electromagnetic radiation departs the outer surface in a second direction that is at an angle to the first direction to irradiate, in the interior volume of the feedstock line, the resin that, due at least in part to the elongate filaments, is not directly accessible to the electromagnetic radiation, incident on the exterior surface of the feedstock line.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: January 29, 2019
    Assignee: The Boeing Company
    Inventors: Mark Stewart Wilenski, Michael Patrick Kozar, Samuel F. Harrison, Nick Shadbeh Evans, Faraón Torres
  • Patent number: 10189240
    Abstract: A method of additively manufacturing a composite part comprises applying a liquid photopolymer resin to a non-resin component to create a continuous flexible line by pulling the non-resin component through a vessel, containing a volume of the liquid photopolymer resin. The continuous flexible line comprises the non-resin component and a photopolymer-resin component that comprises at least some of the liquid photopolymer resin applied to the non-resin component. The method further comprises routing the continuous flexible line into a delivery guide, pushing the continuous flexible line out of the delivery guide, depositing, via the delivery guide, a segment of the continuous flexible line along a print path, and delivering curing energy at least to a portion of the segment of the continuous flexible line.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: January 29, 2019
    Assignee: The Boeing Company
    Inventors: Nick S. Evans, Faraón Torres, Ryan G. Ziegler, Samuel F. Harrison, Ciro J. Grijalva, III, Hayden S. Osborn
  • Patent number: 10183479
    Abstract: A method of additively manufacturing a composite part comprises applying a first quantity of a first part of a thermosetting resin to a first element of a non-resin component by pulling the first element through a first resin-part applicator and applying a second quantity of a second part of the thermosetting resin to a second element of the non-resin component by pulling the second element through a second resin-part applicator. The method also comprises combining the first element with the first quantity of first part and the second element with the second quantity of second part, to create a continuous flexible line. The method additionally comprises routing the continuous flexible line into a delivery guide and depositing, via the delivery guide, a segment of the continuous flexible line along a print path.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: January 22, 2019
    Assignee: The Boeing Company
    Inventors: Nick S. Evans, Faraón Torres, Ryan G. Ziegler, Samuel F. Harrison, Ciro J. Grijalva, III, Hayden S. Osborn
  • Patent number: 10183478
    Abstract: A method of additively manufacturing a composite part is disclosed. The method comprises depositing, via a delivery guide, a segment of a continuous flexible line along a print path. The continuous flexible line comprises a non-resin component and a thermosetting-epoxy-resin component that is partially cured. The method also comprises maintaining the thermosetting-epoxy-resin component of at least the continuous flexible line being advanced toward the print path via the delivery guide below a threshold temperature. The method further comprises delivering a predetermined or actively determined amount of curing energy to the segment of the continuous flexible line at a controlled rate while advancing the continuous flexible line toward the print path to at least partially cure the segment of the continuous flexible line.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: January 22, 2019
    Assignee: The Boeing Company
    Inventors: Nick S. Evans, Faraón Torres, Ryan G. Ziegler, Samuel F. Harrison, Ciro J. Grijalva, III, Hayden S. Osborn