Patents by Inventor Faraz Azadi Manzour

Faraz Azadi Manzour has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11773275
    Abstract: Metal salt based stabilizers are described that are effective to improve stability of sparse metal conductive films formed with metal nanowires, especially silver nanowires. Specifically, vanadium (+5) compositions can be effectively placed in coatings to provide desirable stabilization under accelerated wear testing conditions. Sparse metal conductive films can comprise fused metal nanostructured networks. Cobalt (+2) compounds can be incorporated as stabilization agents within nanowire inks to provide a high degree of stabilization without significantly interfering with the fusing process.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: October 3, 2023
    Assignee: C3 Nano, Inc.
    Inventors: Xiqiang Yang, Yongxing Hu, Ajay Virkar, Arthur Yung-Chi Cheng, Faraz Azadi Manzour, Ying-Syi Li
  • Publication number: 20220033601
    Abstract: Transparent polymeric hardcoats with antimicrobial efficacy are described along with compositions for preparing the hardcoats. The transparent polymeric hardcoats at appropriate thicknesses can provide optical properties of high optical transmission, low haze and high clarity, and are suitable for use in electronic displays designed for commercial applications intended for high consumer use. Touch screens having the transparent polymeric hardcoats are also described.
    Type: Application
    Filed: July 30, 2021
    Publication date: February 3, 2022
    Inventors: Faraz Azadi Manzour, Alexander Seung-il Hong, Salman Mansoor Faroqui, Xiqiang Yang, Ajay Virkar
  • Patent number: 10738212
    Abstract: Optically transparent films can comprise a coating of nanodiamonds to introduce desirable properties, such as hardness, good thermal conductivity and an increased dielectric constant. In general, transparent conductive films can be formed with desirable property enhancing nanoparticles included in a transparent conductive layer and/or in a coating layer. Property enhancing nanoparticles can be formed from materials having a large hardness parameter, a large thermal conductivity and/or a large dielectric constant. Suitable polymers are incorporated as a binder in the layers with the property enhancing nanoparticles. The coatings with property enhancing nanoparticles can be solution coated and corresponding solutions are described.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: August 11, 2020
    Assignee: C3Nano Inc.
    Inventors: Ajay Virkar, Faraz Azadi Manzour, Xiqiang Yang, Hua Gu
  • Publication number: 20180179410
    Abstract: Optically transparent films can comprise a coating of nanodiamonds to introduce desirable properties, such as hardness, good thermal conductivity and an increased dielectric constant. In general, transparent conductive films can be formed with desirable property enhancing nanoparticles included in a transparent conductive layer and/or in a coating layer. Property enhancing nanoparticles can be formed from materials having a large hardness parameter, a large thermal conductivity and/or a large dielectric constant. Suitable polymers are incorporated as a binder in the layers with the property enhancing nanoparticles. The coatings with property enhancing nanoparticles can be solution coated and corresponding solutions are described.
    Type: Application
    Filed: February 6, 2018
    Publication date: June 28, 2018
    Inventors: Ajay Virkar, Faraz Azadi Manzour, Xiqiang Yang, Hua Gu
  • Publication number: 20180105704
    Abstract: Metal salt based stabilizers are described that are effective to improve stability of sparse metal conductive films formed with metal nanowires, especially silver nanowires. Specifically, vanadium (+5) compositions can be effectively placed in coatings to provide desirable stabilization under accelerated wear testing conditions. Sparse metal conductive films can comprise fused metal nanostructured networks. Cobalt (+2) compounds can be incorporated as stabilization agents within nanowire inks to provide a high degree of stabilization without significantly interfering with the fusing process.
    Type: Application
    Filed: October 11, 2017
    Publication date: April 19, 2018
    Inventors: Xiqiang Yang, Yongxing Hu, Ajay Virkar, Arthur Yung-Chi Cheng, Faraz Azadi Manzour, Ying-Syi Li
  • Publication number: 20160369104
    Abstract: Hardcoat formulations are described that cure into interpenetrating crosslinked acrylate polymers and crosslinked epoxy polymers. The epoxy polymers can comprise polysiloxane moieties and/or aliphatic moieties. The acrylate polymers can comprise aliphatic moieties and/or urethane moieties. UV initiator compounds can be used to initiate the curing process upon exposure to UV light. The resulting hardcoat materials are found to exhibit desirable properties. The hardcoat material can be placed over sparse metal transparent conductive layers to provide protection to the conductive layers.
    Type: Application
    Filed: June 16, 2015
    Publication date: December 22, 2016
    Inventors: Hua Gu, Xiqiang Yang, Wen Lin Kwek, Faraz Azadi Manzour, Ajay Virkar
  • Publication number: 20160096967
    Abstract: Optically transparent films can comprise a coating of nanodiamonds to introduce desirable properties, such as hardness, good thermal conductivity and an increased dielectric constant. In general, transparent conductive films can be formed with desirable property enhancing nanoparticles included in a transparent conductive layer and/or in a coating layer. Property enhancing nanoparticles can be formed from materials having a large hardness parameter, a large thermal conductivity and/or a large dielectric constant. Suitable polymers are incorporated as a binder in the layers with the property enhancing nanoparticles. The coatings with property enhancing nanoparticles can be solution coated and corresponding solutions are described.
    Type: Application
    Filed: December 19, 2014
    Publication date: April 7, 2016
    Inventors: Ajay Virkar, Faraz Azadi Manzour, Xiqiang Yang, Hua Gu