Patents by Inventor Faraz Najafi

Faraz Najafi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11621714
    Abstract: An electric circuit includes a plurality of superconducting components, each of the plurality of superconducting components having: a respective first terminal; a respective second terminal; and a respective input. The electric circuit further includes a bias current source electrically-connected to the respective first terminal of each of the plurality of superconducting components. The bias current source is configured to provide a bias current adapted to cause the electric circuit to function as a logical OR gate on the respective inputs of the plurality of superconducting components. The electric circuit further includes an output node adapted to output a state of the logical OR gate.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: April 4, 2023
    Assignee: PSIQUANTUM CORP.
    Inventor: Faraz Najafi
  • Patent number: 11601127
    Abstract: The various embodiments described herein include methods, devices, and systems for operating superconducting circuitry. In one aspect, a programmable circuit includes: (1) a superconducting component arranged in a multi-dimensional array of alternating narrow and wide portions, the superconducting component having an input terminal at a first end and an output terminal at a second end opposite of the first end; and (2) control circuitry coupled to the narrow portions of the superconducting component, the control circuitry configured to transition the narrow portions between superconducting and non-superconducting states. In some implementations, the superconducting component and the control circuitry are formed on different layers of the programmable circuit.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: March 7, 2023
    Assignee: PSIQUANTUM CORP.
    Inventor: Faraz Najafi
  • Publication number: 20230055589
    Abstract: An electronic device includes a substrate and a layer of superconducting material disposed over the substrate. The layer of superconducting material includes a first wire and a loop that is (1) distinct and separate from the first wire and (ii) capacitively coupled to the first wire while the loop and the first wire are in a superconducting state.
    Type: Application
    Filed: October 17, 2022
    Publication date: February 23, 2023
    Inventor: Faraz Najafi
  • Patent number: 11585695
    Abstract: A photon detecting component is provided. The photon detecting component includes a first waveguide and a detecting section. The detecting section includes a second waveguide; a detector, optically coupled with the second waveguide, configured to detect one or more photons in the second waveguide; an optical switch configured to provide an optical coupling between the first waveguide and the second waveguide when the detector is operational; and an electrical switch electrically coupled to the detector, wherein the electrical switch is configured to change state in response to the detector detecting one or more photons. The photon detecting component further includes readout circuitry configured to determine a state of the electrical switch of the detecting section.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: February 21, 2023
    Assignee: PSIQUANTUM CORP.
    Inventor: Faraz Najafi
  • Patent number: 11569816
    Abstract: The various embodiments described herein include methods, devices, and circuits for reducing switch transition time of superconductor switches. In some embodiments, an electrical circuit includes: (i) an input component configured to generate heat in response to an electrical input; and (ii) a first superconducting component thermally-coupled to the input component. The electrical circuit is configured such that, in the absence of the electrical input, at least a portion of the first superconducting component is maintained in a non-superconducting state in the absence of the electrical input; and, in response to the electrical input, the first superconducting component transitions to a superconducting state.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: January 31, 2023
    Assignee: PSIQUANTUM CORP.
    Inventors: Faraz Najafi, Qiaodan Jin Stone
  • Patent number: 11502237
    Abstract: An electronic device (e.g., a diode) is provided that includes a substrate and a patterned layer of superconducting material disposed over the substrate. The patterned layer forms a first electrode, a second electrode, and a loop coupling the first electrode with the second electrode by a first channel and a second channel. The first channel and the second channel have different minimum widths. For a range of current magnitudes, when a magnetic field is applied to the patterned layer of superconducting material, the conductance from the first electrode to the second electrode is greater than the conductance from the second electrode to the first electrode.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: November 15, 2022
    Assignee: PSIQUANTUM CORP.
    Inventors: Faraz Najafi, Syrus Ziai
  • Patent number: 11475945
    Abstract: An electronic device includes a substrate and a layer of superconducting material disposed over the substrate. The layer of superconducting material includes a first wire and a loop that is (i) distinct and separate from the first wire and (ii) capacitively coupled to the first wire while the loop and the first wire are in a superconducting state.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: October 18, 2022
    Assignee: PSIQUANTUM CORP.
    Inventor: Faraz Najafi
  • Patent number: 11473974
    Abstract: The various embodiments described herein include methods, devices, and systems for fabricating and operating superconducting photon detectors. In one aspect, a photon detector includes: (1) a first waveguide configured to guide photons from a photon source; (2) a second waveguide that is distinct and separate from the first waveguide and optically-coupled to the first waveguide; and (3) a superconducting component positioned adjacent to the second waveguide and configured to detect photons within the second waveguide.
    Type: Grant
    Filed: August 4, 2020
    Date of Patent: October 18, 2022
    Assignee: PSIQUANTUM CORP.
    Inventors: Mark Thompson, Faraz Najafi
  • Patent number: 11441941
    Abstract: A superconductor device is manufactured by depositing a barrier layer over a substrate including silicon, the barrier layer including silicon and nitrogen; depositing a seed layer for a superconductor layer over the barrier layer, the seed layer including aluminum and nitrogen; depositing the superconductor layer over the seed layer, the superconductor layer including a layer of a superconductor material, the barrier layer serving as an oxidation barrier between the layer superconductor material and the substrate; and depositing a silicon cap layer over the superconductor layer. In some embodiments, the superconductor device includes a waveguide and a metal contact at a sufficient distance from the waveguide to prevent optical coupling between the metal contact and the waveguide.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: September 13, 2022
    Assignee: PSIQUANTUM CORP.
    Inventors: Chia-Jung Chung, Faraz Najafi, George Kovall, Vitor R. Manfrinato, Vimal Kamineni, Mark Thompson, Syrus Ziai
  • Publication number: 20220262969
    Abstract: A device includes a first semiconductor layer; a portion of a second semiconductor layer disposed on the first semiconductor layer; and a third semiconductor layer including a first region disposed on the portion of the second semiconductor layer and a second region disposed on the first semiconductor layer. A thickness of the first region is less than a predefined thickness. The device also includes an etch stop layer disposed on the third semiconductor layer; a plurality of distinct portions of a fourth semiconductor layer disposed on the etch stop layer and exposing one or more distinct portions of the etch stop layer over the portion of the second semiconductor layer; and a plurality of distinct portions of a superconducting layer disposed on the plurality of distinct portions of the fourth semiconductor layer and the exposed one or more distinct portions of the etch stop layer.
    Type: Application
    Filed: March 7, 2022
    Publication date: August 18, 2022
    Inventors: Faraz NAJAFI, Mark THOMPSON, Damien BONNEAU, Joaquin Matres ABRIL
  • Publication number: 20220231435
    Abstract: An electric circuit includes a first superconducting component, a second superconducting component, a first electrically-insulating component that thermally couples the first superconducting component and the second superconducting component such that heat produced in response to the first superconducting component transitioning to a non-superconducting state is transferred through the first electrically-insulating component to the second superconducting component, and a photon detector coupled to the first superconducting component. The photon detector is configured to output a first current to the first superconducting component upon detection of a threshold number of photons. The electric circuit further includes an output component coupled to the second superconducting component. The output component is configured to be responsive to a voltage drop across the second superconducting component.
    Type: Application
    Filed: August 30, 2021
    Publication date: July 21, 2022
    Inventors: Faraz Najafi, Qiaodan Jin Stone
  • Publication number: 20220214214
    Abstract: A method of resolving a number of photons received by a photon detector includes optically coupling a waveguide to a superconducting wire having alternating narrow and wide portions; electrically coupling the superconducting wire to a current source; and electrically coupling an electrical contact in parallel with the superconducting wire. The electrical contact has a resistance less than a resistance of the superconducting wire while at least one narrow portion of the superconducting wire is in a non-superconducting state. The method includes providing to the superconducting wire, from the current source, a current configured to maintain the superconducting wire in a superconducting state in the absence of incident photons; receiving one or more photons via the waveguide; measuring an electrical property of the superconducting wire, proportional to a number of photons incident on the superconducting wire; and determining the number of received photons based on the electrical property.
    Type: Application
    Filed: March 25, 2022
    Publication date: July 7, 2022
    Inventors: Faraz Najafi, Eric Dudley, Mark Thompson
  • Patent number: 11380731
    Abstract: An electronic component having an asymmetric impedance is provided. The component includes first, second and third branches that connect at a common node. The component includes a first portion of superconducting material disposed along the first branch and a second portion of superconducting material disposed along the second branch. The component includes a first device disposed along the first branch and configured to transition the second portion of the superconducting material to a non-superconducting state when a current between a first terminal of the first device and a second terminal of the first device exceeds a first threshold value and a second device disposed along the second branch and configured to transition the first portion of the superconducting material to a non-superconducting state when a current between a first terminal of the second device and a second terminal of the second device exceeds a second threshold value.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: July 5, 2022
    Assignee: PSIQUANTUM CORP.
    Inventor: Faraz Najafi
  • Patent number: 11362664
    Abstract: A programmable circuit includes a superconducting component arranged in a multi-dimensional array of alternating narrow and wide portions. The programmable circuit further includes a plurality of heat sources, each heat source configured to selectively provide heat to a respective narrow portion sufficient to transition the respective narrow portion from a superconducting state to a non-superconducting state. The programmable circuit further includes a plurality of electrical terminals, each electrical terminal coupled to a respective wide portion of the multi-dimensional array.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: June 14, 2022
    Assignee: PSIQUANTUM CORP.
    Inventors: Faraz Najafi, Qiaodan Jin Stone
  • Publication number: 20220129779
    Abstract: A circuit includes a resonant circuit and a detection circuit. The detection circuit includes a superconducting component coupled with the resonant circuit, and an impedance component coupled to the superconducting component. The superconducting component is configured to receive an input current. The superconducting component is configured to carry a first current that has a current density that is less than a threshold current density, while the first resonant circuit is in the first state, and carry a second current that has a current density that exceeds the threshold current density while the first resonant circuit is in the second state, thereby transitioning the superconducting component to a non-superconducting state while the resonant circuit is in the second state. A method of operating the detection circuit is also described herein.
    Type: Application
    Filed: September 28, 2021
    Publication date: April 28, 2022
    Inventors: Brad A.J. Moores, Faraz Najafi
  • Patent number: 11313719
    Abstract: A photon detector is provided. The photon detector includes a superconducting wire having a plurality of alternating narrow and wide portions; a current source electrically-coupled to the superconducting wire and configured to supply the superconducting wire with electrical current; and an optical waveguide optically coupled to the plurality of narrow portions of the superconducting wire.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: April 26, 2022
    Assignee: PSIQUANTUM CORP.
    Inventors: Faraz Najafi, Eric Dudley, Mark Thompson
  • Patent number: 11289590
    Abstract: The various embodiments described herein include methods, devices, and systems for fabricating and operating diodes. In one aspect, an electrical circuit includes: (1) a diode component having a particular energy band gap; (2) an electrical source electrically coupled to the diode component and configured to bias the diode component in a particular state; and (3) a heating component thermally coupled to a junction of the diode component and configured to selectively supply heat corresponding to the particular energy band gap.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: March 29, 2022
    Assignee: PSIQUANTUM CORP.
    Inventors: Faraz Najafi, Qiaodan Jin Stone, Andrea Bahgat Shehata
  • Patent number: 11283001
    Abstract: A transistor includes (i) a first wire including a semiconducting component configured to operate in an on state at temperatures above a semiconducting threshold temperature and (ii) a second wire including a superconducting component configured to operate in a superconducting state while: a temperature of the superconducting component is below a superconducting threshold temperature and a first input current supplied to the superconducting component is below a current threshold. The semiconducting component is located adjacent to the superconducting component. In response to a first input voltage, the semiconducting component is configured to generate an electromagnetic field sufficient to lower the current threshold such that the first input current exceeds the lowered current threshold.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: March 22, 2022
    Assignee: PSIQUANTUM CORP.
    Inventor: Faraz Najafi
  • Patent number: 11271125
    Abstract: A device includes a first semiconductor layer; a portion of a second semiconductor layer disposed on the first semiconductor layer; and a third semiconductor layer including a first region disposed on the portion of the second semiconductor layer and a second region disposed on the first semiconductor layer. A thickness of the first region is less than a predefined thickness. The device also includes an etch stop layer disposed on the third semiconductor layer; a plurality of distinct portions of a fourth semiconductor layer disposed on the etch stop layer and exposing one or more distinct portions of the etch stop layer over the portion of the second semiconductor layer; and a plurality of distinct portions of a superconducting layer disposed on the plurality of distinct portions of the fourth semiconductor layer and the exposed one or more distinct portions of the etch stop layer.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: March 8, 2022
    Assignee: PSIQUANTUM CORP.
    Inventors: Faraz Najafi, Mark Thompson, Damien Bonneau, Joaquin Matres Abril
  • Publication number: 20220059160
    Abstract: An electronic device (e.g., a superconducting memory cell) includes a substrate and a layer of superconducting material disposed over the substrate. The layer of superconducting material is patterned to form a plurality of distinct instances of the layer of superconducting material including: a first wire; and a loop that is (i) distinct and separate from the first wire and (ii) capacitively coupled to the first wire while the loop and the first wire are in a superconducting state. The loop is configured to form a persistent current via the capacitive coupling in response to a write current applied to the first wire while the loop and the first wire are in the superconducting state. The persistent current represents a logic state of the electronic device.
    Type: Application
    Filed: April 19, 2021
    Publication date: February 24, 2022
    Inventor: Faraz Najafi