Patents by Inventor Farhad Berton

Farhad Berton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9197134
    Abstract: A high voltage controller configured to drive a high voltage generator. The high voltage controller includes a voltage select input and a current select input, an actual voltage input and an actual current input. First circuitry is configured to generate an alternating current (AC) drive signal. Second circuitry configured to generate a direct current (DC) drive signal. Closed loop control circuitry is configured to adjust the DC drive signal based on at least one of the voltage select and current select inputs and at least one of the actual voltage and actual current inputs. The first circuitry may include a push-pull circuit. The second circuitry may include a pulse width modulation (PWM) controller. A high voltage generator may be coupled to the AC and DC drive signals. The high voltage generator may include a high voltage transformer having a pair of primary windings and center tap. The AC drive signal may be coupled to the primary windings and the DC drive signal may be coupled to the center tap.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: November 24, 2015
    Assignee: Durr Systems GmbH
    Inventors: Farhad Berton, Josef Braun
  • Publication number: 20150001940
    Abstract: A high voltage controller configured to drive a high voltage generator. The high voltage controller includes a voltage select input and a current select input, an actual voltage input and an actual current input. First circuitry is configured to generate an alternating current (AC) drive signal. Second circuitry configured to generate a direct current (DC) drive signal. Closed loop control circuitry is configured to adjust the DC drive signal based on at least one of the voltage select and current select inputs and at least one of the actual voltage and actual current inputs. The first circuitry may include a push-pull circuit. The second circuitry may include a pulse width modulation (PWM) controller. A high voltage generator may be coupled to the AC and DC drive signals. The high voltage generator may include a high voltage transformer having a pair of primary windings and center tap. The AC drive signal may be coupled to the primary windings and the DC drive signal may be coupled to the center tap.
    Type: Application
    Filed: September 4, 2014
    Publication date: January 1, 2015
    Inventors: Farhad Berton, Josef Braun
  • Patent number: 8861228
    Abstract: A high voltage controller configured to drive a high voltage generator. The high voltage controller includes a voltage select input and a current select input, an actual voltage input and an actual current input. First circuitry is configured to generate an alternating current (AC) drive signal. Second circuitry configured to generate a direct current (DC) drive signal. Closed loop control circuitry is configured to adjust the DC drive signal based on at least one of the voltage select and current select inputs and at least one of the actual voltage and actual current inputs. The first circuitry may include a push-pull circuit. The second circuitry may include a pulse width modulation (PWM) controller. A high voltage generator may be coupled to the AC and DC drive signals. The high voltage generator may include a high voltage transformer having a pair of primary windings and center tap. The AC drive signal may be coupled to the primary windings and the DC drive signal may be coupled to the center tap.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: October 14, 2014
    Assignee: Durr Systems GmbH
    Inventors: Farhad Berton, Josef Braun
  • Publication number: 20110164439
    Abstract: A high voltage controller configured to drive a high voltage generator. The high voltage controller includes a voltage select input and a current select input, an actual voltage input and an actual current input. First circuitry is configured to generate an alternating current (AC) drive signal. Second circuitry configured to generate a direct current (DC) drive signal. Closed loop control circuitry is configured to adjust the DC drive signal based on at least one of the voltage select and current select inputs and at least one of the actual voltage and actual current inputs. The first circuitry may include a push-pull circuit. The second circuitry may include a pulse width modulation (PWM) controller. A high voltage generator may be coupled to the AC and DC drive signals. The high voltage generator may include a high voltage transformer having a pair of primary windings and center tap. The AC drive signal may be coupled to the primary windings and the DC drive signal may be coupled to the center tap.
    Type: Application
    Filed: December 6, 2010
    Publication date: July 7, 2011
    Applicant: Vishay Electronic GmbH
    Inventors: Farhad Berton, Josef Braun
  • Patent number: 7205771
    Abstract: The circuit arrangement for measuring current flowing through a high-resistance consumer (R1) contains a current mirror circuit (1), in the first branch (T1) of which the high-resistance consumer is connected in series and in the second branch of which an evaluation circuit (3, 4, 5) is connected. The high-resistance consumer is, in particular, a lambda probe (R1) of the catalytic converter of an internal combustion engine, whose resistance value is on the order of several M? and which is operated at high operating temperatures of around 400° C. Accordingly, very small currents on the order of several nA to several ?A must be measured. Thanks to the current mirror circuit, a current (ID2) is generated in the second branch that is equal in magnitude to the current (ID1) flowing through the first branch and the consumer (R1). Thus, the current flowing through the second branch does not load the first branch. All components can be integrated in an integrated circuit, such as an ASIC.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: April 17, 2007
    Assignee: Bourns, Inc.
    Inventor: Farhad Berton
  • Publication number: 20060125467
    Abstract: The circuit arrangement for measuring current flowing through a high-resistance consumer (R1) contains a current mirror circuit (1), in the first branch (T1) of which the high-resistance consumer is connected in series and in the second branch of which an evaluation circuit (3, 4, 5) is connected. The high-resistance consumer is, in particular, a lambda probe (R1) of the catalytic converter of an internal combustion engine, whose resistance value is on the order of several M? and which is operated at high operating temperatures of around 400° C. Accordingly, very small currents on the order of several nA to several ?A must be measured. Thanks to the current mirror circuit, a current (ID2) is generated in the second branch that is equal in magnitude to the current (ID1) flowing through the first branch and the consumer (R1). Thus, the current flowing through the second branch does not load the first branch. All components can be integrated in an integrated circuit, such as an ASIC.
    Type: Application
    Filed: December 13, 2005
    Publication date: June 15, 2006
    Applicant: Bourns, Inc.
    Inventor: Farhad Berton