Patents by Inventor Farhad Majdeteimouri

Farhad Majdeteimouri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210255228
    Abstract: A 3D microwave sensor includes a cloud of particles, e.g., rubidium 87 atoms. A laser system produces: a first probe beam directed through the particle cloud along a first path; a second probe beam directed through the particle cloud along a second path that intersects the first path to define a Rydberg intersection; a first coupling beam that counterpropagates with respect to the first probe beam along the first path; and a second coupling beam that counterpropagates with respect to the second probe beam along the second path. A spectrum analyzer characterizes the microwave field strength at the Rydberg intersection. The laser beams can be steered to move the Rydberg intersection within the particle cloud to compile a microwave field strength distribution in the particle cloud.
    Type: Application
    Filed: March 30, 2021
    Publication date: August 19, 2021
    Inventors: Evan SALIM, Dana Zachary ANDERSON, Jayson DENNEY, Farhad MAJDETEIMOURI
  • Patent number: 11002777
    Abstract: A microwave sensor includes a cloud of particles, e.g., Rubidium 87 atoms. A probe laser beam transitions ground-state particles in its path to an excited state. A set of one or more coupling laser beams causes excited particles to transition to a first Rydberg state so that particles in the intersection of the laser beams are in a dark superposition which is transparent to the probe laser beam so that a frequency spectrum of the probe laser beam shows a transmission peak at the laser frequency. A microwave lens focuses a microwave vector (e.g., a microwave signal) within the intersection, causing particles in the first Rydberg state to transition to a second Rydberg state, splitting the transmission peak into a pair of peaks. The intensity of the microwave vector can be calculated based on the frequency difference between the pair of peaks. The direction of the microwave vector can be determined from the location of the laser-beam intersection.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: May 11, 2021
    Assignees: ColdQuanta, Inc., The Regents of the University of Colorado
    Inventors: Evan Salim, Dana Zachary Anderson, Jayson Denney, Zorana Popovic, Farhad Majdeteimouri
  • Publication number: 20200233025
    Abstract: A microwave sensor includes a cloud of particles, e.g., Rubidium 87 atoms. A probe laser beam transitions ground-state particles in its path to an excited state. A set of one or more coupling laser beams causes excited particles to transition to a first Rydberg state so that particles in the intersection of the laser beams are in a dark superposition which is transparent to the probe laser beam so that a frequency spectrum of the probe laser beam shows a transmission peak at the laser frequency. A microwave lens focuses a microwave vector (e.g., a microwave signal) within the intersection, causing particles in the first Rydberg state to transition to a second Rydberg state, splitting the transmission peak into a pair of peaks. The intensity of the microwave vector can be calculated based on the frequency difference between the pair of peaks. The direction of the microwave vector can be determined from the location of the laser-beam intersection.
    Type: Application
    Filed: September 19, 2019
    Publication date: July 23, 2020
    Inventors: Evan SALIM, Dana Zachary ANDERSON, Jayson DENNEY, Zoya POPOVIC, Farhad MAJDETEIMOURI
  • Patent number: 10629417
    Abstract: A sputter-ion-pump system includes a sputter ion pump and an electronic drive. The electronic drive supplies a voltage across the ion pump to establish, in cooperation with a magnetic field, a Penning trap within the ion pump. A current sensor measures the Penning-trap current across the Penning trap. The Penning trap is used as an indication of pressure within the ion pump or a vacuum chamber including or in fluid communication with the ion pump. The pressure information can be used to determine flow rates, e.g., due to a load, outgassing, and/or leakage from an ambient.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: April 21, 2020
    Assignee: ColdQuanta, Inc.
    Inventors: Steven Michael Hughes, Farhad Majdeteimouri