Patents by Inventor Fariyal Ahmed

Fariyal Ahmed has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080181939
    Abstract: Provided are methods for preparing and delivering stable, purely synthetic, self-assembling, controlled release, polyethylene oxide (PEO)-based polymersome vesicles, and the resulting PEO-based polymersomes capable of such controlled release, and methods of use therefor for the controlled transport and delivery of encapsulatable, cytotoxic, anticancer active agents contained therein. Further provided are methods for controlling destabilization of the vesicle membrane and the resulting hydrolysis-triggered, controlled release of active agent(s) encapsulated in the vesicle by controlling the blend ratio (mol %) of hydrolysable PEO-block copolymer of the hydrophilic component(s) and of the more hydrophobic PEO-block copolymer component(s) to produce amphiphilic high molecular weight PEO-based polymersomes, wherein the PEO volume fraction (fEO) and chain chemistry control encapsulant release kinetics from the copolymer vesicles and the polymersome carrier membrane destabilization.
    Type: Application
    Filed: November 14, 2007
    Publication date: July 31, 2008
    Inventors: Dennis E. Discher, Fariyal Ahmed
  • Publication number: 20050003016
    Abstract: The present invention provides methods for preparing stable, purely synthetic, self-assembling, controlled release, polyethylene oxide (PEO)-based polymersome vesicles, and the resulting PEO-based polymersomes capable of such controlled release, and methods of use therefor for the controlled transport and delivery of encapsulatable active agents contained therein. Further provided are methods for controlling destabilization of the vesicle membrane and the resulting hydrolysis-triggered, controlled release of active agent(s) encapsulated in the vesicle by controlling the blend ratio (mol %) of hydrolysable PEO-block copolymer of the hydrophilic component(s) and of the more hydrophobic PEO-block copolymer component(s) to produce amphiphilic high molecular weight PEO-based polymersomes, wherein the PEO volume fraction (fEO) and chain chemistry control encapsulant release kinetics from the copolymer vesicles and the polymersome carrier membrane destabilization.
    Type: Application
    Filed: March 29, 2004
    Publication date: January 6, 2005
    Inventors: Dennis Discher, Fariyal Ahmed