Patents by Inventor Farnaz Absalan

Farnaz Absalan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240309461
    Abstract: Methods and systems for sample contamination detection are disclosed. In particular, sample barcodes are utilized, wherein each sample barcode is assigned to a sample and ligated to fragments from the sample. The sample barcodes are used in conjunction with indices from sequencing libraries to accurately assign sequence reads to samples during multiplex sequencing. Molecule identifiers may also be utilized to aid in de-duping of sequence reads to precisely identify original NA fragments from a sample. Accordingly, in one or more embodiments, a sequencing method includes isolating DNA fragments in a sample, ligating the DNA fragments with unique molecule identifiers (UMIs), performing an amplification process resulting in amplicons, ligating a sample barcode onto the amplicons, and performing amplicon sequencing. The analytics system looks to whether indices are matched and whether a sample barcode matches to the pair of indices when identifying single-index or double-index hopping events.
    Type: Application
    Filed: March 13, 2024
    Publication date: September 19, 2024
    Inventors: Seyedmedhi Shojaee, Nathan Hunkapiller, Byoungsok Jung, Farnaz Absalan, Chenlu Hou, Sahar Nohzadeh-Malakshah, Christopher Chang
  • Publication number: 20240299944
    Abstract: In accordance with embodiments herein a method for capturing cells of interest in a digital microfluidic system is provided, comprising utilizing a droplet actuator to transport a sample droplet to a microwell device. The microwell device includes a substrate having a plurality of microwells that open onto a droplet operations surface of the microwell device. The sample droplet includes cells of interest that enter the microwells. The method introduces capture beads to the microwells, and the capture elements are immobilized on the capture beads. The method utilizes the droplet actuator to transport a cell lysis reagent droplet to the microwell device. Portions of the cell lysis reagent droplet enter the microwells and, during an incubation period, cause the cells of interest to release analyte that is captured by the capture elements on the capture beads.
    Type: Application
    Filed: May 14, 2024
    Publication date: September 12, 2024
    Inventors: Arash Jamshidi, Yan-you Lin, Farnaz Absalan, Sarah Stuart, Gordon Cann, Yir-Shyuan Wu, Tarun Khurana, Jeffrey S Fisher
  • Patent number: 12011719
    Abstract: In accordance with embodiments herein a method for capturing cells of interest in a digital microfluidic system is provided, comprising utilizing a droplet actuator to transport a sample droplet to a microwell device. The microwell device includes a substrate having a plurality of microwells that open onto a droplet operations surface of the microwell device. The sample droplet includes cells of interest that enter the microwells. The method introduces capture beads to the microwells, and the capture elements are immobilized on the capture beads. The method utilizes the droplet actuator to transport a cell lysis reagent droplet to the microwell device. Portions of the cell lysis reagent droplet enter the microwells and, during an incubation period, cause the cells of interest to release analyte that is captured by the capture elements on the capture beads.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: June 18, 2024
    Assignee: Illumina, Inc.
    Inventors: Arash Jamshidi, Yan-you Lin, Farnaz Absalan, Sarah Stuart, Gordon Cann, Yir-Shyuan Wu, Tarun Khurana, Jeffrey S Fisher
  • Publication number: 20230392143
    Abstract: Methods for generating a sequencing library from a sample comprising a plurality of single-stranded DNA molecules are provided, along with methods of using the generated sequencing library for detecting cancer, determining cancer stage, monitoring cancer progression, and/or determining a cancer classification from a test sample obtained from a subject.
    Type: Application
    Filed: August 22, 2023
    Publication date: December 7, 2023
    Inventors: Farnaz Absalan, Gordon Cann, Arash Jamshidi
  • Publication number: 20220184622
    Abstract: In accordance with embodiments herein a method for capturing cells of interest in a digital microfluidic system is provided, comprising utilizing a droplet actuator to transport a sample droplet to a microwell device. The microwell device includes a substrate having a plurality of microwells that open onto a droplet operations surface of the microwell device. The sample droplet includes cells of interest that enter the microwells. The method introduces capture beads to the microwells, and the capture elements are immobilized on the capture beads. The method utilizes the droplet actuator to transport a cell lysis reagent droplet to the microwell device. Portions of the cell lysis reagent droplet enter the microwells and, during an incubation period, cause the cells of interest to release analyte that is captured by the capture elements on the capture beads.
    Type: Application
    Filed: December 17, 2021
    Publication date: June 16, 2022
    Inventors: Arash Jamshidi, Yan-you Lin, Farnaz Absalan, Sarah Stuart, Gordon Cann, Yir-Shyuan Wu, Tarun Khurana, Jeffrey S. Fisher
  • Patent number: 11203016
    Abstract: In accordance with embodiments herein a method for capturing cells of interest in a digital microfluidic system is provided, comprising utilizing a droplet actuator to transport a sample droplet to a microwell device. The microwell device includes a substrate having a plurality of microwells that open onto a droplet operations surface of the microwell device. The sample droplet includes cells of interest that enter the microwells. The method introduces capture beads to the microwells, and the capture elements are immobilized on the capture beads. The method utilizes the droplet actuator to transport a cell lysis reagent droplet to the microwell device. Portions of the cell lysis reagent droplet enter the microwells and, during an incubation period, cause the cells of interest to release analyte that is captured by the capture elements on the capture beads.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: December 21, 2021
    Assignee: Illumina, Inc.
    Inventors: Arash Jamshidi, Yan-you Lin, Farnaz Absalan, Sarah Stuart, Gordon Cann, Yir-Shyuan Wu, Tarun Khurana, Jeffrey S Fisher
  • Publication number: 20200263170
    Abstract: Methods for generating a sequencing library from a sample comprising a plurality of single-stranded DNA molecules are provided, along with methods of using the generated sequencing library for detecting cancer, determining cancer stage, monitoring cancer progression, and/or determining a cancer classification from a test sample obtained from a subject.
    Type: Application
    Filed: September 14, 2018
    Publication date: August 20, 2020
    Inventors: Farnaz Absalan, Gordon Cann, Arash Jamshidi
  • Publication number: 20200165650
    Abstract: A method for enriching a target nucleic acid comprising providing an endonuclease system having a crRNA or a derivative thereof, and a Cas protein or a variant thereof. The crRNA or the derivative thereof contains a target-specific nucleotide region substantially complementary to a region of the target nucleic acid; contacting the target nucleic acid with the endonuclease system to form a complex; and separating the complex and thereby enriching for the target nucleic acid.
    Type: Application
    Filed: October 21, 2019
    Publication date: May 28, 2020
    Inventors: Gordon M. Cann, Jeffrey G. Mandell, Alex Aravanis, Steven Norberg, Dmitry K. Pokholok, Frank J. Steemers, Farnaz Absalan, Leila Bazargan
  • Patent number: 10457969
    Abstract: A method for enriching a target nucleic acid comprising providing an endonuclease system having a crRNA or a derivative thereof, and a Cas protein or a variant thereof. The crRNA or the derivative thereof contains a target-specific nucleotide region substantially complementary to a region of the target nucleic acid; contacting the target nucleic acid with the endonuclease system to form a complex; and separating the complex and thereby enriching for the target nucleic acid.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: October 29, 2019
    Assignee: Illumina, Inc.
    Inventors: Gordon M. Cann, Jeffrey G. Mandell, Alex Aravanis, Steven Norberg, Dmitry K. Pokholok, Frank J. Steemers, Farnaz Absalan, Leila Bazargan
  • Publication number: 20180250672
    Abstract: In accordance with embodiments herein a method for capturing cells of interest in a digital microfluidic system is provided, comprising utilizing a droplet actuator to transport a sample droplet to a microwell device. The microwell device includes a substrate having a plurality of microwells that open onto a droplet operations surface of the microwell device. The sample droplet includes cells of interest that enter the microwells. The method introduces capture beads to the microwells, and the capture elements are immobilized on the capture beads. The method utilizes the droplet actuator to transport a cell lysis reagent droplet to the microwell device. Portions of the cell lysis reagent droplet enter the microwells and, during an incubation period, cause the cells of interest to release analyte that is captured by the capture elements on the capture beads.
    Type: Application
    Filed: November 30, 2016
    Publication date: September 6, 2018
    Applicant: Illumina, Inc.
    Inventors: Arash Jamshidi, Yan-you Lin, Farnaz Absalan, Sarah Stuart, Gordon Cann, Yir-Shyuan Wu, Tarun Khurana, Jeffrey S Fisher
  • Publication number: 20160017396
    Abstract: A method for enriching a target nucleic acid comprising providing an endonuclease system having a crRNA or a derivative thereof, and a Cas protein or a variant thereof. The crRNA or the derivative thereof contains a target-specific nucleotide region substantially complementary to a region of the target nucleic acid; contacting the target nucleic acid with the endonuclease system to form a complex; and separating the complex and thereby enriching for the target nucleic acid.
    Type: Application
    Filed: July 20, 2015
    Publication date: January 21, 2016
    Applicant: ILLUMINA, INC.
    Inventors: Gordon M. Cann, Jeffrey G. Mandell, Alex Aravanis, Steven Norberg, Dmitry K. Pokholok, Frank J. Steemers, Farnaz Absalan, Leila Bazargan