Patents by Inventor Farshid ROUMI

Farshid ROUMI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9658292
    Abstract: A method for abnormality detection in an energy unit includes passively detecting an abnormality in an energy unit by detecting electromagnetic radiation generated by the abnormality, the energy unit comprising at least one of an electrical energy unit and an electrochemical energy unit. A method for detecting an abnormality in an energy unit includes (a) applying a signal to the energy unit, (b) performing a plurality of measurements, at a respective plurality of different locations within the energy unit, of a response of the energy unit to the signal, and (c) processing the plurality of measurements to identify the abnormality.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: May 23, 2017
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Farshid Roumi, Jamshid Roumi
  • Publication number: 20170108552
    Abstract: A system and method for monitoring characteristics of an electric energy device includes generating an external short from the electric energy device. The external short occurs at a known distance from a sensor and has at least one known external resistance. The received signal representing change in electromagnetic field due to the applied external short may be analyzed to determine a signal parameter that is then analyzed in comparison to a lookup table, based on the known conditions including distance, temperature and the external resistance. The output of this analyses in comparison with expected values may be utilized to identify a characteristic of the energy device.
    Type: Application
    Filed: September 30, 2016
    Publication date: April 20, 2017
    Inventors: Farshid ROUMI, Mahshid ROUMI
  • Publication number: 20160254514
    Abstract: Provided are separator systems for electrochemical systems providing electronic, mechanical and chemical properties useful for a variety of applications including electrochemical storage and conversion. Embodiments provide structural, physical and electrostatic attributes useful for managing and controlling dendrite formation and for improving the cycle life and rate capability of electrochemical cells including silicon anode based batteries, air cathode based batteries, redox flow batteries, solid electrolyte based systems, fuel cells, flow batteries and semisolid batteries. Disclosed separators include multilayer, porous geometries supporting excellent ion transport properties, providing a barrier to prevent dendrite initiated mechanical failure, shorting or thermal runaway, or providing improved electrode conductivity and improved electric field uniformity.
    Type: Application
    Filed: May 6, 2016
    Publication date: September 1, 2016
    Inventor: Farshid ROUMI
  • Publication number: 20160190833
    Abstract: A plurality of battery packs is provided in communication with an energy monitoring and control system. Each battery pack includes a plurality of battery cells that collectively dictate the capabilities of the battery pack. The energy monitoring and control system determines a plurality of pack charging or pack discharging parameters for each battery pack that, when performed, achieve one or more performance metrics at a user level (e.g., performance metrics of each battery pack within a system of multiple battery packs). The battery pack further determines a plurality of cell charging or cell discharging parameters for each battery cell based upon the determined plurality of pack charging or pack discharging parameters for each battery cell that, when performed, achieve one or more performance metrics at a battery level (e.g., performance metrics of different cells of each battery pack).
    Type: Application
    Filed: December 18, 2015
    Publication date: June 30, 2016
    Inventors: Mahshid ROUMI, Farshid ROUMI
  • Patent number: 9379368
    Abstract: Provided are electrochemical systems with electronically and ionically conductive layers that have electronic, mechanical and chemical properties useful for a variety of applications including electrochemical storage and conversion. State of the art electrochemical cells are made with electronically non-conductive separators between the opposite electrodes as the natural choice to prevent any electronic path between the opposite electrodes. Herein, electronically conductive layers are introduced between an electrode and the separator without producing any direct electronic path between the opposite electrodes. Embodiments provide structural, physical and electrostatic attributes useful for managing and controlling dendrite formation and for improving the cycle life and rate capability of electrochemical cells including silicon anode based batteries, air cathode based batteries, redox flow batteries, solid electrolyte based systems, fuel cells, flow batteries and semisolid batteries.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: June 28, 2016
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventor: Farshid Roumi
  • Publication number: 20160013463
    Abstract: Ionically conducting composite membranes are provided which include a solid-state ionically conducting material The ionically conducting composite membranes may be used in electrochemical cells. The solid-state ionically conducting material may be an electrochemically active material. In some electrochemical cells, the solid-state ionically conducting material may be in electronic communication with an external tab.
    Type: Application
    Filed: April 7, 2015
    Publication date: January 14, 2016
    Inventors: Farshid ROUMI, Jamshid ROUMI
  • Publication number: 20150180000
    Abstract: The disclosure provides electrochemical cells including a separator enclosure which encloses at least a portion of a positive or negative electrode. In an embodiment, the separator generates a contact force or pressure on at least a portion of the electrode which can improve the performance of the cell. The disclosure also provides methods for charging an electrochemical cell.
    Type: Application
    Filed: November 18, 2014
    Publication date: June 25, 2015
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventor: Farshid ROUMI
  • Publication number: 20150171398
    Abstract: Disclosed are electrochemical cells including a composite separator capable of changing the performance of the cell by a) changing the internal electric field of the cell, b) activating lost active material, c) providing an auxiliary current collector for an electrode and/or d) limiting or preventing hot spots and/or thermal runaway upon formation of an electronic short in the system. An exemplary composite separator includes at least one electronically conducting layer and at least one electronically insulating layer. Another exemplary composite separator includes an electronically conducting layer and a solid ionic conductor. Also disclosed are methods for detecting and managing the onset of a short in an electrochemical cell and for charging an electrochemical cell.
    Type: Application
    Filed: November 18, 2014
    Publication date: June 18, 2015
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventor: Farshid ROUMI
  • Publication number: 20140272500
    Abstract: A method for abnormality detection in an energy unit includes passively detecting an abnormality in an energy unit by detecting electromagnetic radiation generated by the abnormality, the energy unit comprising at least one of an electrical energy unit and an electrochemical energy unit. A method for detecting an abnormality in an energy unit includes (a) applying a signal to the energy unit, (b) performing a plurality of measurements, at a respective plurality of different locations within the energy unit, of a response of the energy unit to the signal, and (c) processing the plurality of measurements to identify the abnormality.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Farshid ROUMI, Jamshid ROUMI
  • Publication number: 20130224632
    Abstract: Provided are separator systems for electrochemical systems providing electronic, mechanical and chemical properties useful for a variety of applications including electrochemical storage and conversion. Embodiments provide structural, physical and electrostatic attributes useful for managing and controlling dendrite formation and for improving the cycle life and rate capability of electrochemical cells including silicon anode based batteries, air cathode based batteries, redox flow batteries, solid electrolyte based systems, fuel cells, flow batteries and semisolid batteries. Disclosed separators include multilayer, porous geometries supporting excellent ion transport properties, providing a barrier to prevent dendrite initiated mechanical failure, shorting or thermal runaway, or providing improved electrode conductivity and improved electric field uniformity.
    Type: Application
    Filed: January 10, 2013
    Publication date: August 29, 2013
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventor: Farshid ROUMI
  • Publication number: 20130189592
    Abstract: The invention provides part solid, part fluid and flow electrochemical cells, for example, metal-air and lithium-air batteries and three-dimensional electrode arrays for use in part solid, part fluid electrochemical and flow cells and metal-air and lithium-air batteries.
    Type: Application
    Filed: December 21, 2012
    Publication date: July 25, 2013
    Inventors: Farshid ROUMI, Jamshid ROUMI
  • Publication number: 20130017432
    Abstract: In an aspect, the invention provides separator systems for electrochemical systems providing electronic, mechanical and chemical properties useful for a range of electrochemical storage and conversion applications. Separator systems of some embodiments, for example, provide structural, physical and electrostatic attributes useful for managing and controlling dendrite formation in lithium and zinc based batteries. In an embodiment, for example, separator systems of the invention have a multilayer, porous geometry supporting excellent ion transport properties while at the same time providing a barrier effective to prevent dendrite initiated mechanical failure, shorting and/or thermal runaway.
    Type: Application
    Filed: July 10, 2012
    Publication date: January 17, 2013
    Inventor: Farshid ROUMI
  • Publication number: 20120077095
    Abstract: A three-dimensional electrode array for use in electrochemical cells, fuel cells, capacitors, supercapacitors, flow batteries, metal-air batteries and semi-solid batteries.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 29, 2012
    Inventors: Farshid ROUMI, Jamshid Roumi