Patents by Inventor Farzad Chehrazi

Farzad Chehrazi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240111826
    Abstract: An apparatus to facilitate hardware enhancements for double precision systolic support is disclosed. The apparatus includes matrix acceleration hardware having double-precision (DP) matrix multiplication circuitry including a multiplier circuits to multiply pairs of input source operands in a DP floating-point format; adders to receive multiplier outputs from the multiplier circuits and accumulate the multiplier outputs in a high precision intermediate format; an accumulator circuit to accumulate adder outputs from the adders with at least one of a third global source operand on a first pass of the DP matrix multiplication circuitry or an intermediate result from the first pass on a second pass of the DP matrix multiplication circuitry, wherein the accumulator circuit to generate an accumulator output in the high precision intermediate format; and a down conversion and rounding circuit to down convert and round an output of the second pass as final result in the DP floating-point format.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Applicant: Intel Corporation
    Inventors: Jiasheng Chen, Kevin Hurd, Changwon Rhee, Jorge Parra, Fangwen Fu, Theo Drane, William Zorn, Peter Caday, Gregory Henry, Guei-Yuan Lueh, Farzad Chehrazi, Amit Karande, Turbo Majumder, Xinmin Tian, Milind Girkar, Hong Jiang
  • Patent number: 6654301
    Abstract: A bit line that has a feedback path from the bit line to a storage cell on the bit line is provided. The feedback path allows the bit line to discharge through a discharge device that is connected to a non-discharging local bit line. Further, a discharge device capable of discharging a global bit line even when a storage cell connected to the discharge device is not being evaluated is provided. Further, a method to perform a memory array operation by discharging a bit line using multiple discharge devices is provided.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: November 25, 2003
    Assignee: Sun Microsystems, Inc.
    Inventors: Farzad Chehrazi, Shaishav A. Desai, Anup S. Mehta, Devendra N. Tawari
  • Publication number: 20030058721
    Abstract: A bit line that has a feedback path from the bit line to a storage cell on the bit line is provided. The feedback path allows the bit line to discharge through a discharge device that is connected to a non-discharging local bit line. Further, a discharge device capable of discharging a global bit line even when a storage cell connected to the discharge device is not being evaluated is provided. Further, a method to perform a memory array operation by discharging a bit line using multiple discharge devices is provided.
    Type: Application
    Filed: September 27, 2001
    Publication date: March 27, 2003
    Inventors: Farzad Chehrazi, Shaishav A. Desai, Anup S. Mehta, Devendra N. Tawari
  • Publication number: 20020143841
    Abstract: A multiplexer based adder circuit. The novel adder design is suitable for a number of bit sizes, but in one exemplary embodiment is a 64-bit adder. A complete 16-bit scaled adder is taught. The adder circuit is efficient and reconfigurable in that the adder can be partitioned to support a variety of data formats. The adder can add two 64-bit operands, four 32-bit operands, eight 16-bit operands, or sixteen 8-bit operands. The reconfigurability of the adder for different word sizes is achieved using only a small number of control signals for partitioning without increasing the adder size or reducing its speed. The novel adder circuit is designed using multiplexer circuits and two input inverted logic gates making the adder very fast. The adder design recognizes that pass transistor based multiplexer circuits and inverted logic gates are the fastest circuit elements for standard CMOS logic.
    Type: Application
    Filed: August 20, 2001
    Publication date: October 3, 2002
    Applicant: SONY CORPORATION AND SONY ELECTRONICS, INC.
    Inventors: Aamir A. Farooqui, Vojin G. Oklobdzija, Farzad Chehrazi
  • Patent number: 6353843
    Abstract: A partitioned multiplier circuit which is designed for high speed operations. The multiplier of the present invention can perform one 32×32 bit multiplication, two 16×16 bit multiplications (simultaneously) or four 8×8 bit multiplications (simultaneously) depending on input partitioning signals. The time required to perform either the 32×32 bit or the 16×16 bit or the 8×8 bit multiplications is constant. Therefore, multiplication results are available with a constant latency regardless of operand bit-size. In one embodiment, the latency is two clock cycles but the multiplier circuit has a throughput of one clock cycle due to pipelining. The input operands can be signed or unsigned. The hardware is partitioned without any significant increase in the delay or area and the multiplier can provide six different modes of operation.
    Type: Grant
    Filed: October 8, 1999
    Date of Patent: March 5, 2002
    Assignees: Sony Corporation of Japan, Sony Electronics, Inc.
    Inventors: Farzad Chehrazi, Vojin G. Oklobdzija, Aamir A. Farooqui
  • Patent number: 6301599
    Abstract: An improved Booth encoder/selector circuit having an optimized critical path. The Booth encoder has a number of inverters coupled to several of the input multiplier bits. The inverted/non-inverted multiplier bits are then fed as inputs to NAND gates as well as a series of pass gates. The outputs of the pass gates are then fed as inputs to other NAND gates. The output from the NAND gates serve as control signals for controlling the Booth selector. The Booth selector is comprised of inverters and pass gates. Multiplicand bits are input to the pass gates. The control signals generated by the Booth encoder are selectively coupled to the inverters and pass gates such that they control which one of a plurality of multiplicand bits are selected for output. Basically, the Booth selector functions as a multiplexer whereby one of the following is output: the multiplicand bit is multiplied by zero, multiplied by one, multiplied by negative one, multiplied by two, or multiplied by negative two.
    Type: Grant
    Filed: March 29, 1999
    Date of Patent: October 9, 2001
    Assignees: Sony Corporation of Japan, Sony Electronics, Inc.
    Inventors: Farzad Chehrazi, Vojin G. Oklobdzija, Aamir Alam Farooqui
  • Patent number: 6282556
    Abstract: A pipelined data path architecture for use, in one embodiment, in a multimedia processor. The data path architecture requires a maximum of two execution pipestages to perform all instructions including wide data format multiply instructions and specially adapted multimedia instructions, such as the sum of absolute differences (SABD) instruction and other multiply with add (MADD) instructions. The data path architecture includes two wide data format input registers that feed four partitioned 32×32 multiplier circuits. Within two pipestages, the multiply circuit can perform one 128×128 multiply operation, four 32×32 multiply operations, eight 16×16 multiply operations or sixteen 8×8 multiply operations in parallel. The multiply circuit contains a compressor tree which generates a 256-bit sum and a 256-bit carry vector. These vectors are supplied to four 64-bit carry propagate adder circuits which generate the multiply results.
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: August 28, 2001
    Assignees: Sony Corporation of Japan, Sony Electronics, Inc.
    Inventors: Farzad Chehrazi, Vojin G. Oklobdzija
  • Patent number: 6243728
    Abstract: A partitioned shift right logic circuit that is programmable and contains rounding support. The circuit of the present invention accepts a 32-bit value and a shift amount and then performs a right shift operation on the 32-bits and automatically rounds the result(s). Signed or unsigned values can be accepted. The right shift circuit is partitioned so that the 32-bit value can represent: (1) a single 32-bit number; or (2) two 16-bit values. A 1 bit selection input indicates the particular partition format. In operation, if the input value is not negative, then one (“1”) is added at the guard bit position and a right shift with truncate is performed. If the input is negative and the guard bit is zero, then no addition is done and a right shift with truncate is performed. If the input is negative and the guard bit is one and the sticky bit is zero, then no addition is done and a right shift with truncate is performed.
    Type: Grant
    Filed: July 12, 1999
    Date of Patent: June 5, 2001
    Assignees: Sony Corporation of Japan, Sony Electronics, Inc.
    Inventors: Aamir Alam Farooqui, Vojin G. Oklobdzija, Farzad Chehrazi, Wei-Jen Li, Andy W. Yu