Patents by Inventor Farzana I. Khatri

Farzana I. Khatri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10003402
    Abstract: Challenges of direct-to-Earth (DTE) laser communications (lasercom) between spacecraft in low-Earth orbit (LEO) or medium-Earth orbit (MEO) and ground terminals can include short duration transmission windows, long time gaps between the transmission windows, deleterious effects of atmospheric turbulence, and the inability to operate in cloudy weather. Direct-link optical communications systems described herein can have data rates that are high enough to empty high-capacity on-board buffer(s) (e.g., having a capacity of at least about 1 Tb to hundreds of Tb) of a spacecraft in a single pass lasting only tens of seconds to a few minutes (e.g., 1-15 minutes), and overprovisioning the buffer capacity accounts for variations in the latency between links. One or more distributed networks of compact optical ground terminals, connected via terrestrial data networks, receive and demodulate WDM optical data transmissions from a plurality of orbiting spacecraft (e.g., satellites).
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: June 19, 2018
    Assignee: Massachusetts Institute Technology
    Inventors: Don M. Boroson, Bryan S. Robinson, Daniel V. Murphy, Jason Stewart, Farzana I. Khatri, Steven Constantine, David Jason Geisler, Timothy M. Yarnall, Zachary Darling
  • Patent number: 9998221
    Abstract: A satellite in low-Earth orbit (LEO) or medium-Earth orbit (MEO) with a modern image sensor and/or other remote sensing device can collect data at rates of 10 Mbps or higher. At these collection rates, the satellite can accumulate more data between its passes over a given ground station than it can transmit to the ground station in a single pass using radio-frequency (RF) communications. Put differently, the sensors fill the spacecraft's memory faster than the spacecraft can empty it. Fortunately, free-space optical communications signals can carry far more data than RF communications signals. In particular, a spacecraft can transmit over 1 Tb of data in a single pass using burst wavelength-division multiplexed (WDM) optical signals. Each burst may last seconds to minutes, and can include tens to hundreds of WDM channels, each of which is modulated at 10 Gbps or more.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: June 12, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Don M. Boroson, Bryan S. Robinson, Bryan M. Reid, Jamie W. Burnside, Farzana I. Khatri, Steven Constantine
  • Publication number: 20160204865
    Abstract: A satellite in low-Earth orbit (LEO) or medium-Earth orbit (MEO) with a modern image sensor and/or other remote sensing device can collect data at rates of 10 Mbps or higher. At these collection rates, the satellite can accumulate more data between its passes over a given ground station than it can transmit to the ground station in a single pass using radio-frequency (RF) communications. Put differently, the sensors fill the spacecraft's memory faster than the spacecraft can empty it. Fortunately, free-space optical communications signals can carry far more data than RF communications signals. In particular, a spacecraft can transmit over 1 Tb of data in a single pass using burst wavelength-division multiplexed (WDM) optical signals. Each burst may last seconds to minutes, and can include tens to hundreds of WDM channels, each of which is modulated at 10 Gbps or more.
    Type: Application
    Filed: January 8, 2016
    Publication date: July 14, 2016
    Inventors: Don M. Boroson, Bryan S. Robinson, Bryan M. Reid, Jamie W. Burnside, Farzana I. Khatri, Steven Constantine
  • Publication number: 20160204866
    Abstract: Challenges of direct-to-Earth (DTE) laser communications (lasercom) between spacecraft in low-Earth orbit (LEO) or medium-Earth orbit (MEO) and ground terminals can include short duration transmission windows, long time gaps between the transmission windows, deleterious effects of atmospheric turbulence, and the inability to operate in cloudy weather. Direct-link optical communications systems described herein can have data rates that are high enough to empty high-capacity on-board buffer(s) (e.g., having a capacity of at least about 1 Tb to hundreds of Tb) of a spacecraft in a single pass lasting only tens of seconds to a few minutes (e.g., 1-15 minutes), and overprovisioning the buffer capacity accounts for variations in the latency between links, One or more distributed networks of compact optical ground terminals, connected via. terrestrial data networks, receive and demodulate WDM optical data transmissions from a plurality of orbiting spacecraft (e.g., satellites).
    Type: Application
    Filed: January 8, 2016
    Publication date: July 14, 2016
    Inventors: Don M. BOROSON, Bryan S. ROBINSON, Daniel V. MURPHY, Jason STEWART, Farzana I. KHATRI, Steven CONSTANTINE, David Jason GEISLER, Timothy M. YARNALL, Zachary DARLING
  • Patent number: 6549312
    Abstract: A method is provided for optical filter card design that facilitates a relatively efficient filter assignment algorithm solution resulting in a filter design that reduces a probability of unnecessary wavelength regenerations.
    Type: Grant
    Filed: May 9, 2001
    Date of Patent: April 15, 2003
    Assignee: Sycamore Networks, Inc.
    Inventors: Paolo Narvaez, Naimish Patel, Farzana I. Khatri, Murat Azizoglu, Kayi Lee
  • Patent number: 6496305
    Abstract: An optical amplifier for a 4-fiber system having two inputs and outputs is provided that makes use of a single amplifier rather than two separate amplifiers. The optical amplifier node makes use of an interleaver before and after the single amplifier to demultiplex and multiplex even and odd channel signals traveling in opposite directions. The arrangement can also amplify wide channel spaced signals traveling through a plurality of optical fibers. The optical amplifier node can be combined with other like amplifier nodes to provide more complex amplifier solutions at reduced costs due to the need for only half of the typical number of amplifiers. The optical amplifier node can also be combined with, e.g., variable optical attenuators, L/C/S filters, channel add/drop, co- and counter-propagating Raman amplification, and dispersion compensation modules to modify the optical signals as desired.
    Type: Grant
    Filed: July 23, 2001
    Date of Patent: December 17, 2002
    Assignee: Sycamore Networks, Inc.
    Inventors: Derek Spock, Murat Azizoglu, Jonathan C. Bloch, Farzana I. Khatri, Vijayanand Vusirikala, Eric Arthur Swanson
  • Publication number: 20020167742
    Abstract: A method is provided for optical filter card design that facilitates a relatively efficient filter assignment algorithm solution resulting in a filter design that reduces a probability of unnecessary wavelength regenerations.
    Type: Application
    Filed: May 9, 2001
    Publication date: November 14, 2002
    Inventors: Paolo Narvaez, Naimish Patel, Farzana I. Khatri, Murat Azizoglu, Kayi Lee
  • Publication number: 20020141048
    Abstract: An optical amplifier for a 4-fiber system having two inputs and outputs is provided that makes use of a single amplifier rather than two separate amplifiers. The optical amplifier node makes use of an interleaver before and after the single amplifier to demultiplex and multiplex even and odd channel signals traveling in opposite directions. The arrangement can also amplify wide channel spaced signals traveling through a plurality of optical fibers. The optical amplifier node can be combined with other like amplifier nodes to provide more complex amplifier solutions at reduced costs due to the need for only half of the typical number of amplifiers. The optical amplifier node can also be combined with, e.g., variable optical attenuators, L/C/S filters, channel add/drop, co- and counter-propagating Raman amplification, and dispersion compensation modules to modify the optical signals as desired.
    Type: Application
    Filed: July 23, 2001
    Publication date: October 3, 2002
    Inventors: Derek Spock, Murat Azizoglu, Jonathan C. Bloch, Farzana I. Khatri, Vijayanand Vusirikala, Eric Arthur Swanson
  • Publication number: 20020141013
    Abstract: An optical node for providing transport and switch functions on an incoming optical signal with a plurality wavelengths each with a plurality of signal components in a WDM optical network. The optical node includes a first module for taking, extracting and processing the plurality of wavelengths, a second module with a plurality of input ports and a plurality of output ports which further extract the signal components from the plurality of wavelengths, and a third module for taking and processing the signal components and sending them to the plurality of output ports in the second module. A method of processing the wavelengths in one of the nodes first inputs the optical signal that extracts wavelengths from the optical signal, and further extracts signal components from the wavelengths, to allocate signal components onto the input ports. Finally the method switches the signal components from the input ports to the output ports of the optical node.
    Type: Application
    Filed: October 19, 2001
    Publication date: October 3, 2002
    Inventors: Naimish Patel, Farzana I. Khatri, Anthony Chi-Kong Kam, Paolo Narvaez, Eric A. Swanson, Richard A. Barry