Patents by Inventor Faye D. Baker
Faye D. Baker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7823106Abstract: A method, computer system and program product introduce adding a variable performance ranking parameter to a diagram of a circuit to drive implementation of modifications that are yield improving, performance boosting, or performance-neutral. The information is paired to accomplish a more complete design for manufacturability modification in the design of circuits implemented on chips. In this matter, both yield and chip performance are improved.Type: GrantFiled: March 11, 2008Date of Patent: October 26, 2010Assignee: International Business Machines CorporationInventors: Faye D. Baker, Mark R. Beckenbaugh, Jason J. Freerksen, Mark D. Levy
-
Patent number: 7818694Abstract: Optimizing an integrated circuit design to improve manufacturing yield using manufacturing data and algorithms to identify areas with high probability of failures, i.e. critical areas. The process further changes the layout of the circuit design to reduce critical area thereby reducing the probability of a fault occurring during manufacturing. Methods of identifying critical area include common run, geometry mapping, and Voronoi diagrams. Optimization includes but is not limited to incremental movement and adjustment of shape dimensions until optimization objectives are achieved and critical area is reduced.Type: GrantFiled: December 23, 2008Date of Patent: October 19, 2010Assignee: International Business Machines CorporationInventors: Robert J Allen, Faye D Baker, Albert M Chu, Michael S Gray, Jason Hibbeler, Daniel N Maynard, Mervyn Y Tan, Robert F Walker
-
Publication number: 20090235214Abstract: A method, computer system and program product introduce adding a variable performance ranking parameter to a diagram of a circuit to drive implementation of modifications that are yield improving, performance boosting, or performance-neutral. The information is paired to accomplish a more complete design for manufacturability modification in the design of circuits implemented on chips. In this matter, both yield and chip performance are improved.Type: ApplicationFiled: March 11, 2008Publication date: September 17, 2009Inventors: Faye D. Baker, Mark R. Beckenbaugh, Jason J. Freerksen, Mark D. Levy
-
Publication number: 20090100386Abstract: Optimizing an integrated circuit design to improve manufacturing yield using manufacturing data and algorithms to identify areas with high probability of failures, i.e. critical areas. The process further changes the layout of the circuit design to reduce critical area thereby reducing the probability of a fault occurring during manufacturing. Methods of identifying critical area include common run, geometry mapping, and Voronoi diagrams. Optimization includes but is not limited to incremental movement and adjustment of shape dimensions until optimization objectives are achieved and critical area is reduced.Type: ApplicationFiled: December 23, 2008Publication date: April 16, 2009Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Robert J. Allen, Faye D. Baker, Albert M. Chu, Michael S. Gray, Jason Hibbeler, Daniel N. Maynard, Mervyn Y. Tan, Robert F. Walker
-
Patent number: 7503020Abstract: A method of and service for optimizing an integrated circuit design to improve manufacturing yield. The invention uses manufacturing data and algorithms to identify areas with high probability of failures, i.e. critical areas. The invention further changes the layout of the circuit design to reduce critical area thereby reducing the probability of a fault occurring during manufacturing. Methods of identifying critical area include common run, geometry mapping, and Voronoi diagrams. Optimization includes but is not limited to incremental movement and adjustment of shape dimensions until optimization objectives are achieved and critical area is reduced.Type: GrantFiled: June 19, 2006Date of Patent: March 10, 2009Assignee: International Business Machines CorporationInventors: Robert J. Allen, Faye D. Baker, Albert M. Chu, Michael S. Gray, Jason Hibbeler, Daniel N. Maynard, Mervyn Y. Tan, Robert F. Walker
-
Publication number: 20070294648Abstract: A method of and service for optimizing an integrated circuit design to improve manufacturing yield. The invention uses manufacturing data and algorithms to identify areas with high probability of failures, i.e. critical areas. The invention further changes the layout of the circuit design to reduce critical area thereby reducing the probability of a fault occurring during manufacturing. Methods of identifying critical area include common run, geometry mapping, and Voronoi diagrams. Optimization includes but is not limited to incremental movement and adjustment of shape dimensions until optimization objectives are achieved and critical area is reduced.Type: ApplicationFiled: June 19, 2006Publication date: December 20, 2007Inventors: Robert J. Allen, Faye D. Baker, Albert M. Chu, Michael S. Gray, Jason Hibbeler, Daniel N. Maynard, Mervyn Y. Tan, Robert F. Walker
-
Patent number: 6670283Abstract: Disclosed is a method of fabricating a semiconductor device, comprising: (a) providing a bare semiconductor substrate, the substrate having a frontside and a backside; (b) forming one or more protective films on the backside of the substrate; and (c) performing one or more wafer fabrication steps. Some or all the protective films may be removed and the method repeated multiple times during fabrication of the semiconductor device.Type: GrantFiled: November 20, 2001Date of Patent: December 30, 2003Assignee: International Business Machines CorporationInventors: Faye D. Baker, Casey J. Grant, Mousa H. Ishaq, Joel M. Sharrow, James D. Weil
-
Publication number: 20030096507Abstract: Disclosed is a method of fabricating a semiconductor device, comprising: (a) providing a bare semiconductor substrate, the substrate having a frontside and a backside; (b) forming one or more protective films on the backside of the substrate; and (c) performing one or more wafer fabrication steps. Some or all the protective films may be removed and the method repeated multiple times during fabrication of the semiconductor device.Type: ApplicationFiled: November 20, 2001Publication date: May 22, 2003Inventors: Faye D. Baker, Casey J. Grant, Mousa H. Ishaq, Joel M. Sharrow, James D. Weil
-
Patent number: 6232639Abstract: The preferred embodiment of the present invention overcomes the limitations of the prior art and provides a device and method to increase the latch-up immunity of CMOS devices by forming implants at the well edges. The preferred method uses hybrid resist to form these implants at the edges of the N-wells and/or P-wells. The implants reduce the lifetime of minority carriers in the parasitic transistor, and hence reduce the gain of the parasitic transistor. This reduces the propensity of the CMOS device to latch-up. The preferred embodiment method allows these implants to be formed without requiring additional masking steps over prior art methods. Furthermore, the preferred method for forming the implants results in implants that are self aligned to the edges of the wells.Type: GrantFiled: June 30, 1998Date of Patent: May 15, 2001Assignee: International Business Machines CorporationInventors: Faye D. Baker, Jeffrey S. Brown, Robert J. Gauthier, Jr., Steven J. Holmes, Robert K. Leidy, Edward J. Nowak, Steven H. Voldman
-
Patent number: 6033949Abstract: The preferred embodiment of the present invention overcomes the limitations of the prior art and provides a device and method to increase the latch-up immunity of CMOS devices by forming implants at the well edges. The preferred method uses hybrid resist to form these implants at the edges of the N-wells and/or P-wells. The implants reduce the lifetime of minority carriers in the parasitic transistor, and hence reduce the gain of the parasitic transistor. This reduces the propensity of the CMOS device to latch-up. The preferred embodiment method allows these implants to be formed without requiring additional masking steps over prior art methods. Furthermore, the preferred method for forming the implants results in implants that are self aligned to the edges of the wells.Type: GrantFiled: June 30, 1998Date of Patent: March 7, 2000Assignee: International Business Machines CorporationInventors: Faye D. Baker, Jeffrey S. Brown, Robert J. Gauthier, Jr., Steven J. Holmes, Robert K. Leidy, Edward J. Nowak, Steven H. Voldman
-
Patent number: 5861330Abstract: The preferred embodiment of the present invention overcomes the limitations of the prior art and provides a device and method to increase the latch-up immunity of CMOS devices by forming implants at the well edges. The preferred method uses hybrid resist to form these implants at the edges of the N-wells and/or P-wells. The implants reduce the lifetime of minority carriers in the parasitic transistor, and hence reduce the gain of the parasitic transistor. This reduces the propensity of the CMOS device to latch-up. The preferred embodiment method allows these implants to be formed without requiring additional masking steps over prior art methods. Furthermore, the preferred method for forming the implants results in implants that are self aligned to the edges of the wells.Type: GrantFiled: May 7, 1997Date of Patent: January 19, 1999Assignee: International Business Machines CorporationInventors: Faye D. Baker, Jeffrey S. Brown, Robert J. Gauthier, Jr., Steven J. Holmes, Robert K. Leidy, Edward J. Nowak, Steven H. Voldman