Patents by Inventor FEDERICO MAZZARELLA

FEDERICO MAZZARELLA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11933648
    Abstract: The described technology is generally directed towards a sensor output digitizer. The sensor output digitizer can comprise a multiplexer stage, a multi-stage analog to digital converter, and a digital output combiner. The multiplexer stage can be configured to sequentially select sensor outputs from one or more sensors, resulting in a stream of selected sensor outputs. The multi-stage analog to digital converter can be coupled with the multiplexer stage, and can be configured to convert the stream of selected sensor outputs into a stream of digitized outputs. The digital output combiner can be configured to re-scale and sum intermediate outputs of the multi-stage analog to digital converter to produce a stream of digitized sensor outputs.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: March 19, 2024
    Assignee: INVENSENSE, INC.
    Inventors: Federico Mazzarella, Massimiliano Musazzi
  • Publication number: 20230160696
    Abstract: An algorithm and architecture for sense transfer function estimation injects one or more test signals from a signal generator into a MEMS gyroscope to detect an output signal (e.g., proof mass output sense signal), including an in-phase (e.g., Coriolis) component and a quadrature component. The in-phase and quadrature components are encoded with reference signals to determine phase and/or gain variation and are processed via a variety of components (e.g., matrix rotation, digital gain, tones demodulator, transfer function errors estimation, etc.) to estimate a sense transfer function of the MEMS (e.g., Hs(fd)) and corresponding phase and/or gain offset of Hs(fd). The in-phase and quadrature components are also compensated for phase and/or gain offset by system components.
    Type: Application
    Filed: November 14, 2022
    Publication date: May 25, 2023
    Inventors: Vito Avantaggiati, Carlo Pinna, Federico Mazzarella
  • Publication number: 20230032538
    Abstract: The described technology is generally directed towards a sensor signal multiplexer and digitizer with analog notch filter and optimized sample frequency, and corresponding methods of use and manufacture. In some examples, the disclosed technologies can be used to reduce vibration sensitivity of an inertial measurement unit (IMU). The disclosed sensor signal multiplexer can sample sensor inputs on multiple input channels at a first, higher frequency, and integrate samples for each channel in order to generate lower frequency sensor outputs. The lower frequency sensor outputs can be converted to digital form.
    Type: Application
    Filed: March 10, 2022
    Publication date: February 2, 2023
    Inventors: Carlo Pinna, Federico Mazzarella, Daniele Gardino, Cristiano Rocco Marra, Francesco Lazzarini
  • Publication number: 20220333957
    Abstract: The described technology is generally directed towards a sensor output digitizer. The sensor output digitizer can comprise a multiplexer stage, a multi-stage analog to digital converter, and a digital output combiner. The multiplexer stage can be configured to sequentially select sensor outputs from one or more sensors, resulting in a stream of selected sensor outputs. The multi-stage analog to digital converter can be coupled with the multiplexer stage, and can be configured to convert the stream of selected sensor outputs into a stream of digitized outputs. The digital output combiner can be configured to re-scale and sum intermediate outputs of the multi-stage analog to digital converter to produce a stream of digitized sensor outputs.
    Type: Application
    Filed: June 11, 2021
    Publication date: October 20, 2022
    Inventors: Federico Mazzarella, Massimiliano Musazzi
  • Patent number: 10725068
    Abstract: A microelectromechanical (MEMS) accelerometer has a proof mass, a sense electrode, and an auxiliary electrode. The sense electrode is located relative to the proof mass such that a capacitance formed by the sense electrode and the proof mass changes in response to a linear acceleration along a sense axis of the accelerometer. The auxiliary electrode is located relative to the proof mass such that a capacitance formed by the auxiliary electrode and proof mass is static in response to the linear acceleration. A sense drive signal is applied at the sense electrode and an auxiliary drive signal is applied at the auxiliary electrode. The sense drive signal and the auxiliary drive signal have different frequencies. An error is identified based on a portion of a signal that is received from the accelerometer and that is responsive to the auxiliary drive signal. Compensation is performed at the accelerometer based on the identified error.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: July 28, 2020
    Assignee: InvenSense, Inc.
    Inventors: Giacomo Gafforelli, Luca Coronato, Adolfo Giambastiani, Federico Mazzarella, Massimiliano Musazzi, Michele Folz
  • Patent number: 10454371
    Abstract: Various embodiments of the invention provide for a buck-boost circuit that is immune against being stuck in an undesirable mode of operation. The circuit does not require any additional intermediate states other than buck-mode and boost-mode when managing transitions between buck and boost mode. In certain embodiments, a robust and simple buck-boost topology ensures efficient and rapid transitions by operating comparators that are coupled to switching elements of the buck-boost in such a manner that the inductor current can be selectively monitored to detect an inductor current slope during a power transfer phase. Information about the current slope enables a controller to make a decision whether a transition to another state is appropriate.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: October 22, 2019
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Marco Masini, Federico Mazzarella
  • Patent number: 10379137
    Abstract: A microelectromechanical (MEMS) accelerometer has a proof mass, a sense electrode, and an auxiliary electrode. The sense electrode is located relative to the proof mass such that a capacitance formed by the sense electrode and the proof mass changes in response to a linear acceleration along a sense axis of the accelerometer. The auxiliary electrode is located relative to the proof mass such that a capacitance formed by the auxiliary electrode and proof mass is static in response to the linear acceleration. A sense drive signal is applied at the sense electrode and an auxiliary drive signal is applied at the auxiliary electrode. The sense drive signal and the auxiliary drive signal have difference frequencies. A portion of a sensed signal at the sense drive frequency is used to determine linear acceleration while a portion of the sensed signal at the auxiliary drive frequency is used to identify damage within a sense path from the proof mass.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: August 13, 2019
    Assignee: PANASONIC CORPORATION
    Inventors: Giacomo Gafforelli, Luca Coronato, Adolfo Giambastiani, Federico Mazzarella, Massimiliano Musazzi, Michele Folz
  • Patent number: 10317426
    Abstract: An accelerometer has a plurality of proof masses and a plurality of sense electrodes, which collectively form at least two capacitors. A first sense drive signal is applied to a first capacitor and a second sense drive signal is applied to a second capacitor. Both of the sense drive signals have the same sense drive frequency. Capacitance signals are sensed from each of the first capacitor and second capacitor, and a common mode component of the capacitance signals is determined. A capacitor error is identified based on the common mode component.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: June 11, 2019
    Assignee: PANASONIC CORPORATION
    Inventors: Luca Coronato, Giacomo Gafforelli, Adolfo Giambastiani, Federico Mazzarella, Massimiliano Musazzi, Michele Folz
  • Patent number: 9753062
    Abstract: A system and method for making accurate current measurements by determining the differential voltage drop across a resistor in series with the load in the presence of large common mode voltages. A compensating voltage equal in magnitude but 180 degrees out of phase with a common mode voltage is generated and applied to a network of resistors connected to a measurement amplifier, thereby significantly reducing the magnitude of the common mode voltage at the measurement amplifier's inputs. An error correction voltage is generated and applied to the output of the measurement amplifier to compensate for errors in the values of the resistor network.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: September 5, 2017
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Federico Mazzarella, Massimiliano Musazzi
  • Publication number: 20170168086
    Abstract: A microelectromechanical (MEMS) accelerometer has a proof mass, a sense electrode, and an auxiliary electrode. The sense electrode is located relative to the proof mass such that a capacitance formed by the sense electrode and the proof mass changes in response to a linear acceleration along a sense axis of the accelerometer. The auxiliary electrode is located relative to the proof mass such that a capacitance formed by the auxiliary electrode and proof mass is static in response to the linear acceleration. A sense drive signal is applied at the sense electrode and an auxiliary drive signal is applied at the auxiliary electrode. The sense drive signal and the auxiliary drive signal have difference frequencies. A portion of a sensed signal at the sense drive frequency is used to determine linear acceleration while a portion of the sensed signal at the auxiliary drive frequency is used to identify damage within a sense path from the proof mass.
    Type: Application
    Filed: November 29, 2016
    Publication date: June 15, 2017
    Applicant: INVENSENSE INTERNATIONAL, INC.
    Inventors: Giacomo Gafforelli, Luca Coronato, Adolfo Giambastiani, Federico Mazzarella, Massimiliano Musazzi, Michele Folz
  • Publication number: 20170168087
    Abstract: A microelectromechanical (MEMS) accelerometer has a proof mass, a sense electrode, and an auxiliary electrode. The sense electrode is located relative to the proof mass such that a capacitance formed by the sense electrode and the proof mass changes in response to a linear acceleration along a sense axis of the accelerometer. The auxiliary electrode is located relative to the proof mass such that a capacitance formed by the auxiliary electrode and proof mass is static in response to the linear acceleration. A sense drive signal is applied at the sense electrode and an auxiliary drive signal is applied at the auxiliary electrode. The sense drive signal and the auxiliary drive signal have different frequencies. An error is identified based on a portion of a signal that is received from the accelerometer and that is responsive to the auxiliary drive signal. Compensation is performed at the accelerometer based on the identified error.
    Type: Application
    Filed: November 29, 2016
    Publication date: June 15, 2017
    Applicant: INVENSENSE INTERNATIONAL, INC.
    Inventors: Giacomo Gafforelli, Luca Coronato, Adolfo Giambastiani, Federico Mazzarella, Massimiliano Musazzi, Michele Folz
  • Publication number: 20170168088
    Abstract: An accelerometer has a plurality of proof masses and a plurality of sense electrodes, which collectively form at least two capacitors. A first sense drive signal is applied to a first capacitor and a second sense drive signal is applied to a second capacitor. Both of the sense drive signals have the same sense drive frequency. Capacitance signals are sensed from each of the first capacitor and second capacitor, and a common mode component of the capacitance signals is determined. A capacitor error is identified based on the common mode component.
    Type: Application
    Filed: December 6, 2016
    Publication date: June 15, 2017
    Applicant: InvenSense, Inc.
    Inventors: Luca Coronato, Giacomo Gafforelli, Adolfo Giambastiani, Federico Mazzarella, Massimiliano Musazzi, Michele Folz
  • Publication number: 20150260764
    Abstract: A system and method for making accurate current measurements by determining the differential voltage drop across a resistor in series with the load in the presence of large common mode voltages. A compensating voltage equal in magnitude but 180 degrees out of phase with a common mode voltage is generated and applied to a network of resistors connected to a measurement amplifier, thereby significantly reducing the magnitude of the common mode voltage at the measurement amplifier's inputs. An error correction voltage is generated and applied to the output of the measurement amplifier to compensate for errors in the values of the resistor network.
    Type: Application
    Filed: March 23, 2015
    Publication date: September 17, 2015
    Inventors: Federico Mazzarella, Massimiliano Musazzi
  • Patent number: 8988063
    Abstract: A system and method for making accurate current measurements by determining the differential voltage drop across a resistor in series with the load in the presence of large common mode voltages. A compensating voltage equal in magnitude but 180 degrees out of phase with a common mode voltage is generated and applied to a network of resistors connected to a measurement amplifier, thereby significantly reducing the magnitude of the common mode voltage at the measurement amplifier's inputs. An error correction voltage is generated and applied to the output of the measurement amplifier to compensate for errors in the values of the resistor network.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: March 24, 2015
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Federico Mazzarella, Musazzi Massimiliano
  • Publication number: 20130265035
    Abstract: A system and method for making accurate current measurements by determining the differential voltage drop across a resistor in series with the load in the presence of large common mode voltages. A compensating voltage equal in magnitude but 180 degrees out of phase with a common mode voltage is generated and applied to a network of resistors connected to a measurement amplifier, thereby significantly reducing the magnitude of the common mode voltage at the measurement amplifier's inputs. An error correction voltage is generated and applied to the output of the measurement amplifier to compensate for errors in the values of the resistor network.
    Type: Application
    Filed: April 10, 2012
    Publication date: October 10, 2013
    Inventors: FEDERICO MAZZARELLA, MUSAZZI MASSIMILIANO