Patents by Inventor Federico Miorelli

Federico Miorelli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11346970
    Abstract: Seismic data from seismic exploration surveys are mapped into a hypercube of bins or voxels in a four-dimensional space (X, Y, Offset, and Azimuth) according to Common Mid-Point (or CMP) between source and receivers. The mapped data from individual voxels or bins is then analyzed by multimodal statistics. Robust estimates of first break picks are obtained from the analysis. The first break picks are then used to as seed inputs for autopicking iteration, which proceeds to convergence. Estimates of confidence levels in the data are provided for re-picking to reduce computer processing time in successive autopicking iterations. Analysis is provided of different seismic attributes such as azimuthal velocity variations indicative of anisotropy, positioning errors of sources/receivers, geometry errors, and three dimensional distribution of inversion residuals. Analysis is also performed of standard deviation of the travel time data useful for estimating data errors in the inversion covariance matrix.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: May 31, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Daniele Colombo, Federico Miorelli, Diego Rovetta, Gary Wayne Mcneice
  • Patent number: 11340370
    Abstract: Seismic data from seismic exploration surveys are mapped into a hypercube of bins or voxels in a four-dimensional space (X, Y, Offset, and Azimuth) according to Common Mid-Point (or CMP) between source and receivers. The mapped data from individual voxels or bins is then analyzed by multimodal statistics. Robust estimates of first break picks are obtained from the analysis. The first break picks are then used to as seed inputs for autopicking iteration, which proceeds to convergence. Estimates of confidence levels in the data are provided for re-picking to reduce computer processing time in successive autopicking iterations. Analysis is provided of different seismic attributes such as azimuthal velocity variations indicative of anisotropy, positioning errors of sources/receivers, geometry errors, and three dimensional distribution of inversion residuals. Analysis is also performed of standard deviation of the travel time data useful for estimating data errors in the inversion covariance matrix.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: May 24, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Daniele Colombo, Federico Miorelli, Diego Rovetta, Gary Wayne Mcneice
  • Patent number: 11073631
    Abstract: A surface-consistent refraction analysis automatically derives near surface corrections during seismic data processing. Residual time lags are evaluated in multiple CMP-offset-azimuth bins by similarity analysis with a pilot trace where a correlation window is centered at the refracted arrival. The similarity analysis may take the form of computerized cross-correlation, or other criteria such as semblance. The residuals are then used to build a system of linear equations that is simultaneously inverted for surface-consistent shot and receiver time shift corrections plus a possible subsurface residual term. The refraction analysis steps are completely automated and require a fraction of the time needed for conventional near surface analysis.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: July 27, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Daniele Colombo, Federico Miorelli
  • Patent number: 10976459
    Abstract: A surface-consistent refraction analysis automatically derives near surface corrections during seismic data processing. Residual time lags are evaluated in multiple CMP-offset-azimuth bins by similarity analysis with a pilot trace where a correlation window is centered at the refracted arrival. The similarity analysis may take the form of computerized cross-correlation, or other criteria such as semblance. The residuals are then used to build a system of linear equations that is simultaneously inverted for surface-consistent shot and receiver time shift corrections plus a possible subsurface residual term. The refraction analysis steps are completely automated and require a fraction of the time needed for conventional near surface analysis.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: April 13, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Daniele Colombo, Federico Miorelli
  • Patent number: 10914854
    Abstract: A surface-consistent refraction analysis automatically derives near surface corrections during seismic data processing. Residual time lags are evaluated in multiple CMP-offset-azimuth bins by similarity analysis with a pilot trace where a correlation window is centered at the refracted arrival. The similarity analysis may take the form of computerized cross-correlation, or other criteria such as semblance. The residuals are then used to build a system of linear equations that is simultaneously inverted for surface-consistent shot and receiver time shift corrections plus a possible subsurface residual term. The refraction analysis steps are completely automated and require a fraction of the time needed for conventional near surface analysis.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: February 9, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Daniele Colombo, Federico Miorelli
  • Publication number: 20190331817
    Abstract: A surface-consistent refraction analysis method to automatically derive near surface corrections for seismic data processing. The method uses concepts from surface-consistent analysis applied to refracted arrivals. The method includes the use of CMP-offset-azimuth binning, evaluation of mean travel time and standard deviation for each bin, rejection of anomalous first break (FB) picks, derivation of CMP-based travel time-offset functions, conversion to velocity-depth functions, evaluation of long wavelength statics and calculation of surface-consistent residual statics through waveform cross-correlation. Residual time lags are evaluated in multiple CMP-offset-azimuth bins by similarity analysis with a pilot trace for all the other traces in the gather where the correlation window is centered at the refracted arrival. The similarity analysis may take the form of computerized cross-correlation, or other criteria such as semblance.
    Type: Application
    Filed: June 17, 2019
    Publication date: October 31, 2019
    Inventors: DANIELE COLOMBO, FEDERICO MIORELLI
  • Publication number: 20190302298
    Abstract: A surface-consistent refraction analysis method to automatically derive near surface corrections for seismic data processing. The method uses concepts from surface-consistent analysis applied to refracted arrivals. The method includes the use of CMP-offset-azimuth binning, evaluation of mean travel time and standard deviation for each bin, rejection of anomalous first break (FB) picks, derivation of CMP-based travel time-offset functions, conversion to velocity-depth functions, evaluation of long wavelength statics and calculation of surface-consistent residual statics through waveform cross-correlation. Residual time lags are evaluated in multiple CMP-offset-azimuth bins by similarity analysis with a pilot trace for all the other traces in the gather where the correlation window is centered at the refracted arrival. The similarity analysis may take the form of computerized cross-correlation, or other criteria such as semblance.
    Type: Application
    Filed: June 17, 2019
    Publication date: October 3, 2019
    Inventors: Daniele Colombo, Federico Miorelli
  • Patent number: 10386519
    Abstract: A surface-consistent refraction analysis automatically derives near surface corrections during seismic data processing. Residual time lags are evaluated in multiple CMP-offset-azimuth bins by similarity analysis with a pilot trace where a correlation window is centered at the refracted arrival. The similarity analysis may take the form of computerized cross-correlation, or other criteria such as semblance. The residuals are then used to build a system of linear equations that is simultaneously inverted for surface-consistent shot and receiver time shift corrections plus a possible subsurface residual term. The refraction analysis steps are completely automated and require a fraction of the time needed for conventional near surface analysis.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: August 20, 2019
    Assignee: Saudi Arabian Oil Company
    Inventors: Daniele Colombo, Federico Miorelli
  • Publication number: 20190011587
    Abstract: Seismic data from seismic exploration surveys are mapped into a hypercube of bins or voxels in a four-dimensional space (X, Y, Offset, and Azimuth) according to Common Mid-Point (or CMP) between source and receivers. The mapped data from individual voxels or bins is then analyzed by multimodal statistics. Robust estimates of first break picks are obtained from the analysis. The first break picks are then used to as seed inputs for autopicking iteration, which proceeds to convergence. Estimates of confidence levels in the data are provided for re-picking to reduce computer processing time in successive autopicking iterations. Analysis is provided of different seismic attributes such as azimuthal velocity variations indicative of anisotropy, positioning errors of sources/receivers, geometry errors, and three dimensional distribution of inversion residuals. Analysis is also performed of standard deviation of the travel time data useful for estimating data errors in the inversion covariance matrix.
    Type: Application
    Filed: August 31, 2018
    Publication date: January 10, 2019
    Inventors: DANIELE COLOMBO, FEDERICO MIORELLI, DIEGO ROVETTA, GARY WAYNE MCNEICE
  • Publication number: 20180372897
    Abstract: Seismic data from seismic exploration surveys are mapped into a hypercube of bins or voxels in a four-dimensional space (X, Y, Offset, and Azimuth) according to Common Mid-Point (or CMP) between source and receivers. The mapped data from individual voxels or bins is then analyzed by multimodal statistics. Robust estimates of first break picks are obtained from the analysis. The first break picks are then used to as seed inputs for autopicking iteration, which proceeds to convergence. Estimates of confidence levels in the data are provided for re-picking to reduce computer processing time in successive autopicking iterations. Analysis is provided of different seismic attributes such as azimuthal velocity variations indicative of anisotropy, positioning errors of sources/receivers, geometry errors, and three dimensional distribution of inversion residuals. Analysis is also performed of standard deviation of the travel time data useful for estimating data errors in the inversion covariance matrix.
    Type: Application
    Filed: August 31, 2018
    Publication date: December 27, 2018
    Inventors: DANIELE COLOMBO, Federico Miorelli, Diego Rovetta, Gary Wayne Mcneice
  • Patent number: 10067255
    Abstract: Seismic data from seismic exploration surveys are mapped into a hypercube of bins or voxels in a four-dimensional space (X, Y, Offset, and Azimuth) according to Common Mid-Point (or CMP) between source and receivers. The mapped data from individual voxels or bins is then analyzed by multimodal statistics. Robust estimates of first break picks are obtained from the analysis. The first break picks are then used to as seed inputs for autopicking iteration, which proceeds to convergence. Estimates of confidence levels in the data are provided for re-picking to reduce computer processing time in successive autopicking iterations. Analysis is provided of different seismic attributes such as azimuthal velocity variations indicative of anisotropy, positioning errors of sources/receivers, geometry errors, and three dimensional distribution of inversion residuals. Analysis is also performed of standard deviation of the travel time data useful for estimating data errors in the inversion covariance matrix.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: September 4, 2018
    Assignee: Saudi Arabian Oil Company
    Inventors: Daniele Colombo, Federico Miorelli, Diego Rovetta, Gary Wayne McNeice
  • Publication number: 20170068008
    Abstract: Seismic data from seismic exploration surveys are mapped into a hypercube of bins or voxels in a four-dimensional space (X, Y, Offset, and Azimuth) according to Common Mid-Point (or CMP) between source and receivers. The mapped data from individual voxels or bins is then analyzed by multimodal statistics. Robust estimates of first break picks are obtained from the analysis. The first break picks are then used to as seed inputs for autopicking iteration, which proceeds to convergence. Estimates of confidence levels in the data are provided for re-picking to reduce computer processing time in successive autopicking iterations. Analysis is provided of different seismic attributes such as azimuthal velocity variations indicative of anisotropy, positioning errors of sources/receivers, geometry errors, and three dimensional distribution of inversion residuals. Analysis is also performed of standard deviation of the travel time data useful for estimating data errors in the inversion covariance matrix.
    Type: Application
    Filed: September 4, 2015
    Publication date: March 9, 2017
    Inventors: DANIELE COLOMBO, FEDERICO MIORELLI, DIEGO ROVETTA, GARY WAYNE MCNEICE
  • Publication number: 20130085731
    Abstract: Methods and computing systems for multiple-domain inversion are disclosed to enhance subsurface region evaluation. In one embodiment, three or more datasets corresponding to a subterranean region are received, wherein at least one of the datasets is a magnetic dataset; and the three or more datasets are jointly inverted to generate at least a velocity model that corresponds to at least a first part of the subterranean region, and a susceptibility model that corresponds to at least the first part of the subterranean region, wherein the velocity model and the susceptibility model are correlated.
    Type: Application
    Filed: October 4, 2011
    Publication date: April 4, 2013
    Inventors: Michele De Stefano, Simone Re, Federico Miorelli, Federico Golfre' Andreasi