Patents by Inventor Felice Sun

Felice Sun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240032870
    Abstract: An initial set of parameters for operating one or more detection tools is automatically derived and subsequently adjusted so that each detection tool is more or less sensitive to signal characteristics in a region of interest. Detection tool(s) may be applied to physiological signals sensed from a patient (such as EEG signals) and may be configured to run in an implanted medical device that is programmable with the parameters to look for rhythmic activity, spiking, and power changes in the sensed signals, etc. A detection tool may be selected and parameter values derived in a logical sequence and/or in pairs based on a graphical representation of an activity type which may be selected by a user, for example, by clicking and dragging on the graphic via a GUI. Displayed simulations allow a user to assess what will be detected with a derived parameter set and then to adjust the sensitivity of the set or start over as desired.
    Type: Application
    Filed: October 3, 2023
    Publication date: February 1, 2024
    Inventors: Felice Sun, Rosana Esteller, Adam Lee
  • Patent number: 11813087
    Abstract: An initial set of parameters for operating one or more detection tools is automatically derived and subsequently adjusted so that each detection tool is more or less sensitive to signal characteristics in a region of interest. Detection tool(s) may be applied to physiological signals sensed from a patient (such as EEG signals) and may be configured to run in an implanted medical device that is programmable with the parameters to look for rhythmic activity, spiking, and power changes in the sensed signals, etc. A detection tool may be selected and parameter values derived in a logical sequence and/or in pairs based on a graphical representation of an activity type which may be selected by a user, for example, by clicking and dragging on the graphic via a GUI. Displayed simulations allow a user to assess what will be detected with a derived parameter set and then to adjust the sensitivity of the set or start over as desired.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: November 14, 2023
    Assignee: NeuroPace, Inc.
    Inventors: Felice Sun, Rosana Esteller, Adam Lee
  • Publication number: 20210298654
    Abstract: Systems and methods rely on feedback from an active medical device or devices (e.g., neurostimulator coupled to sensing and stimulation elements such as electrodes) to assess the effectiveness of a patient's drug regimen. Such reliance may include analyzing characteristics in physiological data acquired by the medical device(s), for example, in the form of responses evoked from the patient by electrical stimulation waveforms. Systems and methods further involved adjusting one or more parameters according to which a combination therapy consisting of at least a drug regimen and an electrical stimulation therapy are delivered to a patient, in an effort to optimize the therapeutic effect of the combination. The adjustments may be automatically by one or more implanted or external hosts working together or alone, and/or with the input of a physician.
    Type: Application
    Filed: June 14, 2021
    Publication date: September 30, 2021
    Inventors: Tara L. Crowder, Brett M. Wingeier, Martha J. Morrell, Felice Sun, Thomas Tcheng
  • Publication number: 20210244356
    Abstract: An initial set of parameters for operating one or more detection tools is automatically derived and subsequently adjusted so that each detection tool is more or less sensitive to signal characteristics in a region of interest. Detection tool(s) may be applied to physiological signals sensed from a patient (such as EEG signals) and may be configured to run in an implanted medical device that is programmable with the parameters to look for rhythmic activity, spiking, and power changes in the sensed signals, etc. A detection tool may be selected and parameter values derived in a logical sequence and/or in pairs based on a graphical representation of an activity type which may be selected by a user, for example, by clicking and dragging on the graphic via a GUI. Displayed simulations allow a user to assess what will be detected with a derived parameter set and then to adjust the sensitivity of the set or start over as desired.
    Type: Application
    Filed: April 29, 2021
    Publication date: August 12, 2021
    Inventors: Felice Sun, Rosana Esteller, Adam Lee
  • Patent number: 11064926
    Abstract: Systems and methods rely on feedback from an active medical device or devices (e.g., neurostimulator coupled to sensing and stimulation elements such as electrodes) to assess the effectiveness of a patient's drug regimen. Such reliance may include analyzing characteristics in physiological data acquired by the medical device(s), for example, in the form of responses evoked from the patient by electrical stimulation waveforms. Systems and methods further involved adjusting one or more parameters according to which a combination therapy consisting of at least a drug regimen and an electrical stimulation therapy are delivered to a patient, in an effort to optimize the therapeutic effect of the combination. The adjustments may be automatically by one or more implanted or external hosts working together or alone, and/or with the input of a physician.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: July 20, 2021
    Assignee: NeuroPace, Inc.
    Inventors: Tara L. Crowder, Brett M. Wingeier, Martha J. Morrell, Felice Sun, Thomas Tcheng
  • Patent number: 11026631
    Abstract: An initial set of parameters for operating one or more detection tools is automatically derived and subsequently adjusted so that each detection tool is more or less sensitive to signal characteristics in a region of interest. Detection tool(s) may be applied to physiological signals sensed from a patient (such as EEG signals) and may be configured to run in an implanted medical device that is programmable with the parameters to look for rhythmic activity, spiking, and power changes in the sensed signals, etc. A detection tool may be selected and parameter values derived in a logical sequence and/or in pairs based on a graphical representation of an activity type which may be selected by a user, for example, by clicking and dragging on the graphic via a GUI. Displayed simulations allow a user to assess what will be detected with a derived parameter set and then to adjust the sensitivity of the set or start over as desired.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: June 8, 2021
    Assignee: NeuroPace, Inc.
    Inventors: Felice Sun, Rosana Esteller, Adam Lee
  • Patent number: 10722176
    Abstract: An initial set of parameters for operating one or more detection tools is automatically derived and subsequently adjusted so that each detection tool is more or less sensitive to signal characteristics in a region of interest. Detection tool(s) may be applied to physiological signals sensed from a patient (such as EEG signals) and may be configured to run in an implanted medical device that is programmable with the parameters to look for rhythmic activity, spike activity, and power changes in the sensed signals, etc. A detection tool may be selected, and parameter values derived in a logical sequence and/or in pairs based on a graphical representation of an activity type which may be selected by a user, for example, by clicking and dragging on the graphic via a GUI. Displayed simulations allow a user to assess what will be detected with a derived parameter set and then to adjust the sensitivity of the set or start over as desired.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: July 28, 2020
    Assignee: NeuroPace, Inc.
    Inventors: Rosana Esteller, Felice Sun
  • Publication number: 20190223796
    Abstract: An initial set of parameters for operating one or more detection tools is automatically derived and subsequently adjusted so that each detection tool is more or less sensitive to signal characteristics in a region of interest. Detection tool(s) may be applied to physiological signals sensed from a patient (such as EEG signals) and may be configured to run in an implanted medical device that is programmable with the parameters to look for rhythmic activity, spike activity, and power changes in the sensed signals, etc. A detection tool may be selected, and parameter values derived in a logical sequence and/or in pairs based on a graphical representation of an activity type which may be selected by a user, for example, by clicking and dragging on the graphic via a GUI. Displayed simulations allow a user to assess what will be detected with a derived parameter set and then to adjust the sensitivity of the set or start over as desired.
    Type: Application
    Filed: April 3, 2019
    Publication date: July 25, 2019
    Inventors: Rosana ESTELLER, Felice SUN
  • Patent number: 10299728
    Abstract: An initial set of parameters for operating one or more detection tools is automatically derived and subsequently adjusted so that each detection tool is more or less sensitive to signal characteristics in a region of interest. Detection tool(s) may be applied to physiological signals sensed from a patient (such as EEG signals) and may be configured to run in an implanted medical device that is programmable with the parameters to look for rhythmic activity, spike activity, and power changes in the sensed signals, etc. A detection tool may be selected, and parameter values derived in a logical sequence and/or in pairs based on a graphical representation of an activity type which may be selected by a user, for example, by clicking and dragging on the graphic via a GUI. Displayed simulations allow a user to assess what will be detected with a derived parameter set and then to adjust the sensitivity of the set or start over as desired.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: May 28, 2019
    Assignee: NeuroPace, Inc.
    Inventors: Rosana Esteller, Felice Sun
  • Publication number: 20190029551
    Abstract: An initial set of parameters for operating one or more detection tools is automatically derived and subsequently adjusted so that each detection tool is more or less sensitive to signal characteristics in a region of interest. Detection tool(s) may be applied to physiological signals sensed from a patient (such as EEG signals) and may be configured to run in an implanted medical device that is programmable with the parameters to look for rhythmic activity, spiking, and power changes in the sensed signals, etc. A detection tool may be selected and parameter values derived in a logical sequence and/or in pairs based on a graphical representation of an activity type which may be selected by a user, for example, by clicking and dragging on the graphic via a GUI. Displayed simulations allow a user to assess what will be detected with a derived parameter set and then to adjust the sensitivity of the set or start over as desired.
    Type: Application
    Filed: October 4, 2018
    Publication date: January 31, 2019
    Inventors: Felice Sun, Rosana Esteller, Adam Lee
  • Patent number: 10123715
    Abstract: An initial set of parameters for operating one or more detection tools is automatically derived and subsequently adjusted so that each detection tool is more or less sensitive to signal characteristics in a region of interest. Detection tool(s) may be applied to physiological signals sensed from a patient (such as EEG signals) and may be configured to run in an implanted medical device that is programmable with the parameters to look for rhythmic activity, spiking, and power changes in the sensed signals, etc. A detection tool may be selected and parameter values derived in a logical sequence and/or in pairs based on a graphical representation of an activity type which may be selected by a user, for example, by clicking and dragging on the graphic via a GUI. Displayed simulations allow a user to assess what will be detected with a derived parameter set and then to adjust the sensitivity of the set or start over as desired.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: November 13, 2018
    Assignee: NeuroPace, Inc.
    Inventors: Felice Sun, Rosana Esteller, Adam Lee
  • Publication number: 20180220963
    Abstract: An initial set of parameters for operating one or more detection tools is automatically derived and subsequently adjusted so that each detection tool is more or less sensitive to signal characteristics in a region of interest. Detection tool(s) may be applied to physiological signals sensed from a patient (such as EEG signals) and may be configured to run in an implanted medical device that is programmable with the parameters to look for rhythmic activity, spike activity, and power changes in the sensed signals, etc. A detection tool may be selected, and parameter values derived in a logical sequence and/or in pairs based on a graphical representation of an activity type which may be selected by a user, for example, by clicking and dragging on the graphic via a GUI. Displayed simulations allow a user to assess what will be detected with a derived parameter set and then to adjust the sensitivity of the set or start over as desired.
    Type: Application
    Filed: March 21, 2018
    Publication date: August 9, 2018
    Inventors: Rosana ESTELLER, Felice SUN
  • Patent number: 9955921
    Abstract: An initial set of parameters for operating one or more detection tools is automatically derived and subsequently adjusted so that each detection tool is more or less sensitive to signal characteristics in a region of interest. Detection tool(s) may be applied to physiological signals sensed from a patient (such as EEG signals) and may be configured to run in an implanted medical device that is programmable with the parameters to look for rhythmic activity, spike activity, and power changes in the sensed signals, etc. A detection tool may be selected and parameter values derived in a logical sequence and/or in pairs based on a graphical representation of an activity type which may be selected by a user, for example, by clicking and dragging on the graphic via a GUI. Displayed simulations allow a user to assess what will be detected with a derived parameter set and then to adjust the sensitivity of the set or start over as desired.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: May 1, 2018
    Assignee: NeuroPace, Inc.
    Inventors: Rosana Esteller, Felice Sun
  • Publication number: 20180085015
    Abstract: Systems and methods rely on feedback from an active medical device or devices (e.g., neurostimulator coupled to sensing and stimulation elements such as electrodes) to assess the effectiveness of a patient's drug regimen. Such reliance may include analyzing characteristics in physiological data acquired by the medical device(s), for example, in the form of responses evoked from the patient by electrical stimulation waveforms. Systems and methods further involved adjusting one or more parameters according to which a combination therapy consisting of at least a drug regimen and an electrical stimulation therapy are delivered to a patient, in an effort to optimize the therapeutic effect of the combination. The adjustments may be automatically by one or more implanted or external hosts working together or alone, and/or with the input of a physician.
    Type: Application
    Filed: November 17, 2017
    Publication date: March 29, 2018
    Inventors: Tara L. Crowder, Brett M. Wingeier, Martha J. Morrell, Felice Sun, Thomas Tcheng
  • Publication number: 20170311890
    Abstract: An initial set of parameters for operating one or more detection tools is automatically derived and subsequently adjusted so that each detection tool is more or less sensitive to signal characteristics in a region of interest. Detection tool(s) may be applied to physiological signals sensed from a patient (such as EEG signals) and may be configured to run in an implanted medical device that is programmable with the parameters to look for rhythmic activity, spike activity, and power changes in the sensed signals, etc. A detection tool may be selected and parameter values derived in a logical sequence and/or in pairs based on a graphical representation of an activity type which may be selected by a user, for example, by clicking and dragging on the graphic via a GUI. Displayed simulations allow a user to assess what will be detected with a derived parameter set and then to adjust the sensitivity of the set or start over as desired.
    Type: Application
    Filed: July 19, 2017
    Publication date: November 2, 2017
    Inventors: Rosana ESTELLER, Felice SUN
  • Patent number: 9743886
    Abstract: An initial set of parameters for operating one or more detection tools is automatically derived and subsequently adjusted so that each detection tool is more or less sensitive to signal characteristics in a region of interest. Detection tool(s) may be applied to physiological signals sensed from a patient (such as EEG signals) and may be configured to run in an implanted medical device that is programmable with the parameters to look for rhythmic activity, spiking, and power changes in the sensed signals, etc. A detection tool may be selected and parameter values derived in a logical sequence and/or in pairs based on a graphical representation of an activity type which may be selected by a user, for example, by clicking and dragging on the graphic via a GUI. Displayed simulations allow a user to assess what will be detected with a derived parameter set and then to adjust the sensitivity of the set or start over as desired.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: August 29, 2017
    Assignee: NeuroPace, Inc.
    Inventors: Rosana Esteller, Felice Sun
  • Patent number: 9597032
    Abstract: Described here are implantable devices and methods for monitoring physiological information relating to sleep. The implantable devices are generally designed to include at least one sensor for sensing physiological information, a processor for processing the physiological information using low computational power to detect a sleep stage, and a battery. The detected sleep stage information may then be used to indicate sleep quality, identify or monitor a medical condition, or guide treatment thereof.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: March 21, 2017
    Assignee: NeuroPace, Inc.
    Inventors: Felice Sun, Benjamin D. Pless, Barbara Gibb
  • Publication number: 20160287120
    Abstract: An initial set of parameters for operating one or more detection tools is automatically derived and subsequently adjusted so that each detection tool is more or less sensitive to signal characteristics in a region of interest. Detection tool(s) may be applied to physiological signals sensed from a patient (such as EEG signals) and may be configured to run in an implanted medical device that is programmable with the parameters to look for rhythmic activity, spiking, and power changes in the sensed signals, etc. A detection tool may be selected and parameter values derived in a logical sequence and/or in pairs based on a graphical representation of an activity type which may be selected by a user, for example, by clicking and dragging on the graphic via a GUI. Displayed simulations allow a user to assess what will be detected with a derived parameter set and then to adjust the sensitivity of the set or start over as desired.
    Type: Application
    Filed: June 15, 2016
    Publication date: October 6, 2016
    Inventors: Felice Sun, Rosana Esteller, Adam Lee
  • Patent number: 9392972
    Abstract: An initial set of parameters for operating one or more detection tools is automatically derived and subsequently adjusted so that each detection tool is more or less sensitive to signal characteristics in a region of interest. Detection tool(s) may be applied to physiological signals sensed from a patient (such as EEG signals) and may be configured to run in an implanted medical device that is programmable with the parameters to look for rhythmic activity, spiking, and power changes in the sensed signals, etc. A detection tool may be selected and parameter values derived in a logical sequence and/or in pairs based on a graphical representation of an activity type which may be selected by a user, for example, by clicking and dragging on the graphic via a GUI. Displayed simulations allow a user to assess what will be detected with a derived parameter set and then to adjust the sensitivity of the set or start over as desired.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: July 19, 2016
    Assignee: NeuroPace, Inc.
    Inventors: Felice Sun, Rosana Esteller, Adam Lee
  • Publication number: 20160166199
    Abstract: Described here are implantable devices and methods for monitoring physiological information relating to sleep. The implantable devices are generally designed to include at least one sensor for sensing physiological information, a processor for processing the physiological information using low computational power to detect a sleep stage, and a battery. The detected sleep stage information may then be used to indicate sleep quality, identify or monitor a medical condition, or guide treatment thereof.
    Type: Application
    Filed: February 18, 2016
    Publication date: June 16, 2016
    Inventors: Felice SUN, Benjamin D. PLESS, Barbara GIBB