Patents by Inventor Felipe Godinez

Felipe Godinez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10753991
    Abstract: Parallel transmit Magnetic Resonance MR scanner used to image a conductive object such as an interventional device like a guidewire within a subject. This is achieved by determining which Radio Frequency RF transmission modes produced by the parallel RF transmission elements couple with the conductive object and then transmitting at significantly reduced power so as to prevent excessive heating of the conductive object to an extent that would damage the surrounding tissue of the subject, for example, the coupling RF transmission modes may be generated at less than 30%, preferably around 10% of the normal power levels that would conventionally be used for MR imaging. However, even at these low power levels sufficient electric currents are induced in the conductive device to cause detectable MR signals; the location of the conductive object within the subject can thus be visualised.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: August 25, 2020
    Assignee: King's College London
    Inventors: Shaihan Malik, Francesco Padormo, Joseph Hajnal, Felipe Godinez
  • Publication number: 20190128977
    Abstract: Parallel transmit Magnetic Resonance MR scanner used to image a conductive object such as an interventional device like a guidewire within a subject. This is achieved by determining which Radio Frequency RF transmission modes produced by the parallel RF transmission elements couple with the conductive object and then transmitting at significantly reduced power so as to prevent excessive heating of the conductive object to an extent that would damage the surrounding tissue of the subject, for example, the coupling RF transmission modes may be generated at less than 30%, preferably around 10% of the normal power levels that would conventionally be used for MR imaging. However, even at these low power levels sufficient electric currents are induced in the conductive device to cause detectable MR signals; the location of the conductive object within the subject can thus be visualised.
    Type: Application
    Filed: April 6, 2017
    Publication date: May 2, 2019
    Inventors: Shaihan MALIK, Francesco PADORMO, Joseph HAJNAL, Felipe GODINEZ
  • Patent number: 9632187
    Abstract: Systems and methods for a positron emission tomography (PET) kit are described. A PET detector kit may include a gantry, a plurality of PET detector modules, and an event processing device. A PET detector module may include a housing, a crystal, a light detector, and a communication component. The housing may include at least one connective element configured to removably and adjustably couple the PET detector module to the gantry. The crystal may be located within the housing. The light detector may be configured to detect light emitted by the crystal. The communication component may be configured to communicate data from the at least one light detector to an event processing device. The event processing device may receive data from the plurality of PET detector modules and may cause the one or more processors to determine coincidence events based on the received data.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: April 25, 2017
    Assignee: The Regents of the University of California
    Inventors: Ramsey D. Badawi, Simon Cherry, Felipe Godinez, Jonathan Poon, Martin Judenhofer, Jinyi Qi, Abhijit Chaudhari, Madagama Sumanasena, Julien Bec
  • Publication number: 20140367577
    Abstract: Systems and methods for a positron emission tomography (PET) kit are described. A PET detector kit may include a gantry, a plurality of PET detector modules, and an event processing device. A PET detector module may include a housing, a crystal, a light detector, and a communication component. The housing may include at least one connective element configured to removably and adjustably couple the PET detector module to the gantry. The crystal may be located within the housing. The light detector may be configured to detect light emitted by the crystal. The communication component may be configured to communicate data from the at least one light detector to an event processing device. The event processing device may receive data from the plurality of PET detector modules and may cause the one or more processors to determine coincidence events based on the received data.
    Type: Application
    Filed: June 12, 2014
    Publication date: December 18, 2014
    Inventors: Ramsey D. Badawi, Simon Cherry, Felipe Godinez, Jonathan Poon, Martin Judenhofer, Jinyi Qi, Abhijit Chaudhari, Madagama Sumanasena, Julien Bec