Patents by Inventor Felix Blank

Felix Blank has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10352896
    Abstract: A cell and/or a measuring instrument are arranged for coulometric titration. The cell has first and second electrochemical half-cells, each of which is connected into a regulated circuit and each of which has an associated electrode. The second electrode (3) is immersed in an electrolyte (2) that is solid or solidified and fills a second housing (1). The second housing is closed, with charge and material exchange only possible through a diaphragm (4) that is disposed between the respective electrochemical half-cells. The electrolyte contains a first redox partner that, along with at least one second redox partner, is part of a redox system. The redox partners are selected to substantially suppress gas development inside the cell during operation. The first electrode and the second housing are disposed in a first housing so that at least the diaphragm and the first electrode are in contact with a sample during operation.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: July 16, 2019
    Assignee: METTLER-TOLEDO GMBH
    Inventors: Thomas Blank, Günter Pfuhl, Félix Bécheiraz
  • Patent number: 9698437
    Abstract: A method for operating a fuel cell stack (10) for a fuel cell system, in particular of a vehicle, in which by reversing the flow direction (14, 16) of a coolant during a cooling operation, the coolant in the fuel cell stack (10) is initially conveyed in a first direction (14). The coolant is subsequently conveyed in a second direction (16) which is at least substantially opposite to the first direction (14). A time period, after the elapse of which the flow direction (14, 16) is reversed, is changed during the cooling operation. In addition, a distance at which a coolant volume is situated from a heat source (12) that is present in the fuel cell stack (10) may be changed during the cooling operation. The invention further relates to a fuel cell system.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: July 4, 2017
    Assignee: Daimler AG
    Inventors: Felix Blank, Martin Woehr
  • Publication number: 20150180051
    Abstract: A fuel cell module includes at least one fuel cell stack with a housing. The at least one fuel cell stack is arranged, with a plurality of system components for conducting and/or conditioning the fluids for the supply of the at least one fuel cell stack, with a mechanical interface for fastening the fuel cell module to the vehicle. The mechanical interface is arranged on the housing, wherein the housing forms a carrier for the system components.
    Type: Application
    Filed: March 27, 2013
    Publication date: June 25, 2015
    Inventors: Felix Blank, Simon Hollnaicher, Martin Keuerleber, Jan Martinec, Cosimo Mazzotta, Uwe Pfister, Michael Procter, Pavel Sarkady, Wolfgang Schmid, Holger Stark
  • Publication number: 20150086886
    Abstract: A fuel cell stack arrangement includes a fuel cells arranged between a first and a second end plate. At least one of the end plates is designed as a channel end plate with at least one channel. The channel has a stack opening, which is opened in the direction of the stack, and a second opening. The stack opening and the second opening are connected to each other via a channel section and are arranged at a distance to each other in a top view looking down on the channel end plate.
    Type: Application
    Filed: March 27, 2013
    Publication date: March 26, 2015
    Inventors: Felix Blank, Simon Hollnaicher, Martin Keuerleber, Jan Martinec, Cosimo Mazzotta, Uwe Pfister, Michael Procter, Pavel Sarkady, Wolfgang Schmid, Holger Stark
  • Publication number: 20150044590
    Abstract: A method for operating a fuel cell stack (10) for a fuel cell system, in particular of a vehicle, in which by reversing the flow direction (14, 16) of a coolant during a cooling operation, the coolant in the fuel cell stack (10) is initially conveyed in a first direction (14). The coolant is subsequently conveyed in a second direction (16) which is at least substantially opposite to the first direction (14). A time period, after the elapse of which the flow direction (14, 16) is reversed, is changed during the cooling operation. In addition, a distance at which a coolant volume is situated from a heat source (12) that is present in the fuel cell stack (10) may be changed during the cooling operation. The invention further relates to a fuel cell system.
    Type: Application
    Filed: February 21, 2013
    Publication date: February 12, 2015
    Applicant: Daimler AG
    Inventors: Felix Blank, Martin Woehr
  • Publication number: 20140315110
    Abstract: A method for operating a fuel cell system involves operating the fuel cell with recirculation of anode exhaust gas below a predefined maximum load limit of the fuel cell and operating the fuel cell without recirculation of the anode exhaust gas between the load limit and the full load of the fuel cell.
    Type: Application
    Filed: August 29, 2012
    Publication date: October 23, 2014
    Applicant: Daimler AG
    Inventors: Felix Blank, Steffen Dehn, Matthias Jesse, Cosimo Mazzotta, Martin Woehr
  • Publication number: 20140046762
    Abstract: In one aspect, a database in which target subscribers of different subscriber classes that can be reached via a communications system are allocated, and one respective marketer is assigned to each of the subscriber classes. When the communications system establishes a first communications relation between a first subscriber and a target subscriber while using a destination address given by the first subscriber, the subscriber class of the target subscriber is determined based on the destination address. The determination of the subscriber class results in the establishment of a second communications relation between the first subscriber and a marketer assigned to the determined subscriber class.
    Type: Application
    Filed: October 23, 2013
    Publication date: February 13, 2014
    Applicant: SIEMENS ENTERPRISE COMMUNICATIONS GMBH & CO. KG
    Inventor: Felix Blank
  • Patent number: 8645207
    Abstract: In one aspect, a database in which target subscribers of different subscriber classes that can be reached via a communications system are allocated, and one respective marketer is assigned to each of the subscriber classes. When the communications system establishes a first communications relation between a first subscriber and a target subscriber while using a destination address given by the first subscriber, the subscriber class of the target subscriber is determined based on the destination address. The determination of the subscriber class results in the establishment of a second communications relation between the first subscriber and a marketer assigned to the determined subscriber class.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: February 4, 2014
    Assignee: Siemens Enterprise Communications GmbH & Co. KG
    Inventor: Felix Blank
  • Patent number: 8173321
    Abstract: The invention relates to a fuel cell having a membrane electrode arrangement (16) arranged between two separator plate units (44), a first fluid area (12) for distribution of a first fluid which is adjacent to one side of the membrane-electrode arrangement (16), a second fluid area (14) for distribution of a second fluid which is adjacent to a side of the membrane-electrode arrangement (16) opposite this side, with a separating wall (36) being arranged in at least one fluid area (12) and subdividing the fluid area (12) into at least one metering area (32) and one fluid subarea (34), with the at least one metering area (32) having a fluid connection to the adjacent fluid subarea (34) at at least one metering point (38), such that the first fluid can be metered from the metering area (32) through the metering point (38) into the adjacent fluid subarea (34).
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: May 8, 2012
    Assignee: Daimler AG
    Inventor: Felix Blank
  • Patent number: 8158299
    Abstract: The invention relates to a bipolar plate for a fuel cell stack, which comprises at least a an anode-side sub-plate. An interior of the bipolar plate is enclosed by the sub-plates, with a fluid port area arranged having at least one fluid port, over which a fluid can be conveyed to the fluid channels. The fluid channels are arranged on at least one of the flat sides, as well as a manifold zone, over which the fluid can be distributed to its assigned fluid channels and an accumulation zone, over which the fluid can be carried away from the fluid channels to another fluid port area. At least one of the sub-plates has a uniform arrangement of raised support points in the manifold zone and/or accumulation zone. Apart from the peripherally situated support points, a negative support point of the same type is designed adjacent to each raised support point inside the manifold zone and/or the accumulation zone.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: April 17, 2012
    Assignee: Daimler AG
    Inventors: Felix Blank, Thomas Kunick, Markus Schudy
  • Patent number: 8039170
    Abstract: A fuel cell includes a membrane electrode assembly (MEA) and at least one bipolar plate having an anode-side gas distributor structure for distributing anode reactants, a cathode-side gas distributor structure for distributing cathode reactants, and a guide passage structure for distributing a cooling medium. At least one of the anode-side gas distributor structure and the cathode-side gas distributor structure is divided into at least a first field and a second field, each of the first and second fields having an entry port and an exit port for the reactants. In addition, a method for such a fuel cell includes passing a reactant into an entry port of the first field and out of an exit port of the first field, mixing the reactant with a fresh reactant so as to form a mixture, and passing the mixture into the entry port of the second field.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: October 18, 2011
    Assignee: Daimler AG
    Inventors: Felix Blank, Cosmas Heller
  • Patent number: 8026015
    Abstract: A membrane electrode assembly for a fuel cell having a polymer electrolyte membrane, having a layer sequence comprising an ion-conducting membrane (2), a catalyst layer (3) and a gas diffusion layer (5). A substantially catalyst-free, porous condensation layer (5) is arranged between the catalyst layer (3) and the membrane (2).
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: September 27, 2011
    Assignee: Daimler AG
    Inventors: Felix Blank, Verena Graf, Cosmas Heller, Martin Quintus, Regina Wezel
  • Publication number: 20110229779
    Abstract: A fuel cell includes a membrane electrode assembly (MEA) and at least one bipolar plate having an anode-side gas distributor structure for distributing anode reactants, a cathode-side gas distributor structure for distributing cathode reactants, and a guide passage structure for distributing a cooling medium. At least one of the anode-side gas distributor structure and the cathode-side gas distributor structure is divided into at least a first field and a second field, each of the first and second fields having an entry port and an exit port for the reactants. In addition, a method for such a fuel cell includes passing a reactant into an entry port of the first field and out of an exit port of the first field, mixing the reactant with a fresh reactant so as to form a mixture, and passing the mixture into the entry port of the second field.
    Type: Application
    Filed: May 19, 2011
    Publication date: September 22, 2011
    Applicant: Daimler AG
    Inventors: Felix Blank, Cosmas Heller
  • Patent number: 7972748
    Abstract: A fuel cell includes a membrane electrode assembly (MEA) and at least one bipolar plate having an anode-side gas distributor structure for distributing anode reactants, a cathode-side gas distributor structure for distributing cathode reactants, and a guide passage structure for distributing a cooling medium. At least one of the anode-side gas distributor structure and the cathode-side gas distributor structure is divided into at least a first field and a second field, each of the first and second fields having an entry port and an exit port for the reactants. In addition, a method for such a fuel cell includes passing a reactant into an entry port of the first field and out of an exit port of the first field, mixing the reactant with a fresh reactant so as to form a mixture, and passing the mixture into the entry port of the second field.
    Type: Grant
    Filed: July 2, 2003
    Date of Patent: July 5, 2011
    Assignee: Daimler AG
    Inventors: Felix Blank, Cosmas Heller
  • Publication number: 20110159396
    Abstract: The invention relates to a bipolar plate (3) for a fuel cell arrangement (1), in particular for placement between two adjacent membrane electrode arrangements, comprising at least one or two plates disposed plane-parallel relative to one another, wherein a flow field (F) is formed from the channel structures made in the respective plate at least on one or both outer sides, respectively, said channel structures comprising a plurality of channels (K) running between a fluid inlet (E) and a fluid outlet (A) and webs (S) running between two channels (K). According to the invention, the channels (K) and/or the webs (S) comprise at least one varying channel width (b1), one varying web width (b2) and/or one varying channel distance (a) on at least one of the outer sides along a flow direction (R) of a fluid between the fluid inlet (E) and the fluid outlet (A).
    Type: Application
    Filed: July 9, 2009
    Publication date: June 30, 2011
    Applicant: DAIMLER AG
    Inventors: Joerg Kleemann, Markus Schudy, Felix Blank, Florian Finsterwalder
  • Publication number: 20110097648
    Abstract: The invention relates to an electrochemical cell, especially a proton exchange membrane fuel cell (PEM fuel cell) or an electrolysis cell which displays improved efficiency as a result of improved temperature or moisture distribution and/or reactant distribution inside said cell. The invention is characterized in that in an electrochemical cell, comprising a channel structure for feeding, circulating and discharging fluids necessary for the operation of said cell, at least one element (4, 7, 8, 9-14, 22, 23, 29, 40, 48, 49) modifying the flow cross-section is integrated into at least one channel (2, 15, 26, 27, 37) of the channel structure for automatic control of at least one fluid flow (5, 24, 33, 34).
    Type: Application
    Filed: August 4, 2003
    Publication date: April 28, 2011
    Applicant: DaimlerChrysler AG
    Inventor: Felix Blank
  • Patent number: 7811719
    Abstract: Proposed is a PEM fuel cell that comprises a separator plate assembly with a charging chamber, which is partitioned off by a partition wall and via charging spots has a fluid connection to an adjoining cathode chamber. The partition wall is designed so that the depths of the charging channels in the charging chamber and the depths of the distribution channels in the adjoining cathode chambers change in such a way that the quantity of oxidant that is charged at a charging spot from the charging chamber into the cathode chamber can be fixed in advance. As a result, the charging of oxidant, which has not been humidified or only slightly, into the cathode chamber can be improved with regard to the curve of the relative humidity along the cathode. Also proposed is a method for manufacturing a separator plate assembly suitable for a PEM fuel cell.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: October 12, 2010
    Assignee: Daimler AG
    Inventors: Felix Blank, Thomas Kunick
  • Publication number: 20090325036
    Abstract: The invention relates to a bipolar plate for a fuel cell stack, which comprises at least a an anode-side sub-plate. An interior of the bipolar plate is enclosed by the sub-plates, with a fluid port area arranged having at least one fluid port, over which a fluid can be conveyed to the fluid channels. The fluid channels are arranged on at least one of the flat sides, as well as a manifold zone, over which the fluid can be distributed to its assigned fluid channels and an accumulation zone, over which the fluid can be carried away from the fluid channels to another fluid port area. At least one of the sub-plates has a uniform arrangement of raised support points in the manifold zone and/or accumulation zone. Apart from the peripherally situated support points, a negative support point of the same type is designed adjacent to each raised support point inside the manifold zone and/or the accumulation zone.
    Type: Application
    Filed: May 28, 2008
    Publication date: December 31, 2009
    Applicant: Daimler AG
    Inventors: Felix Blank, Thomas Kunick, Markus Schudy
  • Publication number: 20090197134
    Abstract: The invention relates to a fuel cell having a membrane electrode arrangement (16) arranged between two separator plate units (44), a first fluid area (12) for distribution of a first fluid which is adjacent to one side of the membrane-electrode arrangement (16), a second fluid area (14) for distribution of a second fluid which is adjacent to a side of the membrane-electrode arrangement (16) opposite this side, with a separating wall (36) being arranged in at least one fluid area (12) and subdividing the fluid area (12) into at least one metering area (32) and one fluid subarea (34), with the at least one metering area (32) having a fluid connection to the adjacent fluid subarea (34) at at least one metering point (38), such that the first fluid can be metered from the metering area (32) through the metering point (38) into the adjacent fluid subarea (34).
    Type: Application
    Filed: May 4, 2007
    Publication date: August 6, 2009
    Applicant: Daimler AG
    Inventor: Felix Blank
  • Patent number: 7485389
    Abstract: An electrochemical fuel cell stack includes a membrane electrode assembly and a distributor plate. The distributor plate includes a channel region having gas channels for distributing reaction gas to the membrane electrode assembly, a first port area for supplying reaction gas to the channel region, and a second port area for removing reaction gas from the channel region. The gas channels are disentangled and each distributed in a respective separate channel area, at least one of the gas channels having at least one deflection point between the first and second port areas.
    Type: Grant
    Filed: December 15, 2001
    Date of Patent: February 3, 2009
    Assignee: Daimler AG
    Inventors: Felix Blank, Ottmar Schmid, Markus Schudy