Patents by Inventor Felix Heide

Felix Heide has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150310798
    Abstract: System and method of displaying images in temporal superresolution by multiplicative superposition of cascaded display layers integrated in a display device. Using an original video with a target temporal resolution as a priori, a factorization process is performed to derive respective image data for presentation on each display layer. The multiple layers are refreshed in staggered intervals to synthesize a video with an effective refresh rate exceeding that of each individual display layer, e.g., by a factor equal to the number of layers. Further optically averaging neighboring pixels can minimize artifacts.
    Type: Application
    Filed: March 17, 2015
    Publication date: October 29, 2015
    Inventors: Felix Heide, Douglas Lanman, Dikpal Reddy, Jan Kautz, Kari Pulli, David Luebke
  • Publication number: 20150310789
    Abstract: System and method of displaying images in spatial/temporal superresolution by multiplicative superposition of cascaded display layers integrated in a display device. Using an original image with a target spatial/temporal resolution as a priori, a factorization process is performed to derive respective image data for presentation on each display layer. The cascaded display layers may be progressive and laterally shifted with each other, resulting in an effective spatial resolution exceeding the native display resolutions of the display layers. Factorized images may be refreshed on respective display layers in synchronization or out of synchronization.
    Type: Application
    Filed: March 17, 2015
    Publication date: October 29, 2015
    Inventors: Felix Heide, Douglas Lanman, Dikpal Reddy, Jan Kautz, Kari Pulli, David Luebke
  • Publication number: 20150254810
    Abstract: There is provided a computer-implemented method for solving inverse imaging problems to compensate for distortions in an image. The method comprises: minimizing a cost objective function containing a data fitting term and one or more image prior terms to each of the plurality of channels, the one or more image prior terms comprising cross-channel information for a plurality of channels derived from the image.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 10, 2015
    Applicant: The University of British Columbia
    Inventors: Wolfgang Heidrich, Felix Heide, Mushfiqur Rouf, Matthias Hullin
  • Publication number: 20150206504
    Abstract: A computer implemented method of determining a latent image from an observed image is disclosed. The method comprises implementing a plurality of image processing operations within a single optimization framework, wherein the single optimization framework comprises solving a linear minimization expression. The method further comprises mapping the linear minimization expression onto at least one non-linear solver. Further, the method comprises using the non-linear solver, iteratively solving the linear minimization expression in order to extract the latent image from the observed image, wherein the linear minimization expression comprises: a data term, and a regularization term, and wherein the regularization term comprises a plurality of non-linear image priors.
    Type: Application
    Filed: January 20, 2015
    Publication date: July 23, 2015
    Inventors: Dawid Stanislaw Pajak, Felix Heide, Nagilla Dikpal Reddy, Mushfiqur Rouf, Jan Kautz, Kari Pulli, Orazio Gallo
  • Publication number: 20150035880
    Abstract: In exemplary implementations of this invention, light from a backlight is transmitted through two stacked LCDs and then through a diffuser. The front side of the diffuser displays a time-varying sequence of 2D images. Processors execute an optimization algorithm to compute optimal pixel states in the first and second LCDs, respectively, such that for each respective image in the sequence, the optimal pixel states minimize, subject to one or more constraints, a difference between a target image and the respective image. The processors output signals to control actual pixel states in the LCDs, based on the computed optimal pixel states. The 2D images displayed by the diffuser have a higher spatial resolution than the native spatial resolution of the LCDs. Alternatively, the diffuser may be switched off, and the device may display either (a) 2D images with a higher dynamic range than the LCDs, or (b) an automultiscopic display.
    Type: Application
    Filed: August 5, 2014
    Publication date: February 5, 2015
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Felix Heide, Gordon Wetzstein, James Gregson, Ramesh Raskar, Wolfgang Heidrich