Patents by Inventor Felix Martin

Felix Martin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12188003
    Abstract: Provided herein is a method for processing a liquid sample, utilizing a first component including an interface side and at least 3 sample containers or tanks; and a second component including a connector manifold. The method may include the step of reversibly connecting a reagent container, a filtration apparatus, and a chromatography apparatus to the manifold; reversibly connecting the first component to the connector manifold; pressurizing the first sample tank; transferring the sample into the filtration apparatus; passing the sample through a filter; transferring the sample into the second sample tank; transferring the sample into the chromatography apparatus; transferring the reagent into the chromatography apparatus; and transferring the sample to the third sample tank. Some or all transfers may be routed via the connector manifold and the interface side.
    Type: Grant
    Filed: September 28, 2023
    Date of Patent: January 7, 2025
    Assignee: Trisk Bio Ltd.
    Inventors: Gergo Bohner, Adam Luke Hiles, Samuel Isidor Jones, Kevin Lynagh, Ryan Olf, Gabor Pap, Spencer Ryan Wilson, Thomas Felix Martin Cummings
  • Publication number: 20240375844
    Abstract: The invention relates to a container for storing and transporting objects, wherein the container comprises a base, which delimits a lower part of the container, and at least one first pair of side walls arranged opposite one another extending upwards from the base, wherein at least the side walls of the first pair of side walls each have drainage channels for the lateral drainage of water from the container and the drainage channels within the side walls are each separated from one another by partition walls,
    Type: Application
    Filed: May 7, 2024
    Publication date: November 14, 2024
    Inventors: Stefan BECKMANN, Felix Martin HOSTER, Moritz Laurin PORCHER
  • Patent number: 12013066
    Abstract: Provided herein is a method for sterile fluid transfer. A first array of conduits may be disposed in a first compartment having a planar face with an array of cavities, each containing a cannular protrusion fluidly connected to a conduit. A second array of conduits may be disposed in a second compartment having its own planar face with an array of surface cannular protrusions, each fluidly connected to a conduit in the second array. The method may include sterilizing the lumens of each conduit-protrusion pair; snugly juxtaposing the two planar faces to form an array of steam-tight chambers; introducing a sterilizing gas into the chambers; expelling the sterilizing gas from the chambers; moving each cannular protrusion towards its facing surface protrusion to reversibly form a fluid connection therebetween, while the chamber remains externally sealed, and transferring a fluid across at least one fluidic connection.
    Type: Grant
    Filed: November 3, 2023
    Date of Patent: June 18, 2024
    Assignee: Trisk Bio Ltd.
    Inventors: Adam Luke Hiles, Gergo Bohner, Ryan Olf, Samuel Isidor Jones, Thomas Felix Martin Cummings, Gabor Pap, Spencer Ryan Wilson, Aaron Garden Cantrell, Michael Anthony Disimoni Stone, Matthew Edwin Page
  • Patent number: 11939565
    Abstract: Provided herein is a method for incubating living cells, in accordance with principles of the disclosure, may include the steps of: (a) providing a pressurized gas to a medium reservoir, the pressurized gas providing an impetus that moves a growth medium in the medium reservoir to a bioreactor chamber via a first incoming fluid line connecting the medium reservoir to the bioreactor chamber; (b) simultaneously or subsequently to step (a), providing a pressurized gas to a cell reservoir holding a suspension of the living cells, the pressurized gas providing an impetus that moves the suspension to the bioreactor chamber via a second incoming fluid line connecting the cell reservoir to the bioreactor chamber; and (c) incubating the growth medium and the living cells in the bioreactor chamber, under conditions compatible with cell viability.
    Type: Grant
    Filed: June 28, 2023
    Date of Patent: March 26, 2024
    Assignee: Trisk Bio Ltd.
    Inventors: Gergo Bohner, Adam Luke Hiles, Samuel Isidor Jones, Kevin Lynagh, Ryan Olf, Gabor Pap, Spencer Ryan Wilson, Thomas Felix Martin Cummings
  • Publication number: 20240001155
    Abstract: Senescent cells are implicated in aspects of age-related decline in health and may contribute to certain diseases. Senescent cells also limit the viability of cells in cell culture. The invention includes methods of using a stressor (e.g., shock waves, pneumatics, hydraulics, magnetic elements, etc.) to reverse senescence. In embodiments, cells are exposed to ultrasound to reverse senescence. Ultrasound can be used to administered in short duration pressure waves to cells to create mechanical stresses. These conditions are safe for normal tissue and do not adversely influence their function. The stressor can rejuvenate senescent cells so that they are phenotypically normal. Additional embodiments include methods of treating senescence-associated diseases and disorders by administering a stressor such as low frequency ultrasound (LFU). The methods described herein can also be used for slowing the aging process and/or reducing signs of aging.
    Type: Application
    Filed: June 30, 2023
    Publication date: January 4, 2024
    Applicant: Mechanobiologics, Inc.
    Inventors: Michael Sheetz, Sanjay Kumar Kureel, Felix Martin Margadant
  • Patent number: 11524364
    Abstract: A method for additive manufacturing an object is disclosed. The method includes, for a first portion of the object to be built in a first overlapping field region of a plurality of melting beams of a metal powder AM system, sequentially forming each layer of the first portion by: forming only a border section of the first portion of the object using a first melting beam of the plurality of melting beams in the first overlapping field region; and forming an internal section of the first portion of the object within the border section using at least one second, different melting beam from the first melting beam in the first overlapping field region. An entirety of an internal edge of the border section of the first portion of the object is overlapped with an entirety of an external edge of the internal section of the first portion of the object.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: December 13, 2022
    Assignee: General Electric Company
    Inventors: Felix Martin Gerhard Roerig, Juan Vicente Haro Gonzalez
  • Publication number: 20220283109
    Abstract: A capacitance sensing system senses frost and ice accumulation in an energy efficient defrost system. The capacitance sensing system comprises a first capacitor including a portion of a metal heat exchanger and a sensor electrode electrically isolated from the metal heat exchanger; a tank oscillator including a second capacitor and an inductor coupled in parallel with each other and with the first capacitor; and a circuit coupled to the tank oscillator. The circuit determines a resonant frequency of the tank oscillator, determines a capacitance value of the first capacitor based on the resonant frequency of the tank oscillator, and transmits a heater activation command in response to determining the capacitance value is greater than a threshold.
    Type: Application
    Filed: May 23, 2022
    Publication date: September 8, 2022
    Inventors: Bjoern Oliver EVERSMANN, Andreas Felix Martin Kraemer, Michael Seidl
  • Patent number: 11371954
    Abstract: A capacitance sensing system for sensing frost and ice accumulation. The capacitance sensing system comprises a first capacitor formed by a portion of a metal heat exchanger and a sensor electrode electrically isolated from the metal heat exchanger, a tank oscillator comprising a second capacitor and an inductor connected in parallel with each other and coupled in parallel with the first capacitor, and a circuit coupled to the tank oscillator. The circuit coupled to the tank oscillator is configured to determine a resonant frequency of the tank oscillator, determine a capacitance value based on the resonant frequency of the tank oscillator, determine that the capacitance value is greater than a predefined threshold, and transmit a heater activation command in response to determining the capacitance value is greater than the predefined threshold.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: June 28, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Bjoern Oliver Eversmann, Andreas Felix Martin Kraemer, Michael Seidl
  • Patent number: 10974474
    Abstract: An applicator repair system for an additive manufacturing (AM) system, and an AM system including the same are disclosed. The applicator repair system includes a repair device including a repair element configured to repair a damaged applicator element on an applicator of an AM system. The damaged applicator element is configured to distribute a layer of raw material on a build platform of the AM system. The repair device is positioned within a processing chamber of the AM system. A damaged applicator controller may be provided that is configured to cause repair of the damaged active applicator in response to the damaged applicator being identified as damaged.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: April 13, 2021
    Assignee: General Electric Company
    Inventors: Donnell Eugene Crear, Mikhail Pavlov, Felix Martin Gerhard Roerig, Dean Andrew Snelling
  • Patent number: 10926188
    Abstract: A salt water desalination assembly includes a tank for containing salt water. The tank has an inverted cone therein that is positioned above the salt water thereby facilitating water vapor from the salt water to condense on the inverted cone. An input pipe extends into the tank to fill the tank with the salt water. A condensate pipe extends upwardly into the tank and the condensate pipe is aligned with the inverted cone to collect the condensed water vapor for subsequent use. A stand is vertically oriented and is positioned adjacent to the tank. A reflector is pivotally coupled to the stand and the reflector is exposed to sunlight. The reflector focuses the reflected sunlight onto the tank for heating the tank and thereby facilitate the salt water in the tank to be heated for producing the water vapor.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: February 23, 2021
    Inventor: Felix Martin
  • Patent number: 10821551
    Abstract: An additive manufacturing system includes a laser device, a build plate, and a scanning device. The laser device is configured to generate a laser beam with a variable intensity. The build plate is configured to support a powdered build material. The scanning device is configured to selectively direct the laser beam across the powdered build material to generate a melt pool on the build plate. The scanning device is configured to oscillate a spatial position of the laser beam while the laser device simultaneously modulates the intensity of the laser beam to facilitate reducing spatter and to facilitate reducing a temperature of the melt pool to reduce overheating of the melt pool.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: November 3, 2020
    Assignee: General Electronic Company
    Inventors: Subhrajit Roychowdhury, Matthias Hoebel, Michael Evans Graham, Robert John Filkins, Felix Martin Gerhard Roerig, Donnell Eugene Crear, Prabhjot Singh
  • Patent number: 10814429
    Abstract: An additive manufacturing system includes a laser device, a build plate, and a scanning device. The laser device is configured to generate a laser beam with a variable intensity. The build plate is configured to support a powdered build material. The scanning device is configured to selectively direct the laser beam across the powdered build material to generate a melt pool on the build plate. The scanning device is configured to oscillate a spatial position of the laser beam while the laser device is configured to simultaneously modulate the intensity of the laser beam to thermally control the melt pool.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: October 27, 2020
    Assignee: General Electric Company
    Inventors: Subhrajit Roychowdhury, Matthias Hoebel, Lang Yuan, Prabhjot Singh, Michael Evans Graham, Robert John Filkins, Thomas Etter, Felix Martin Gerhard Roerig
  • Publication number: 20200282326
    Abstract: A salt water desalination assembly includes a tank for containing salt water. The tank has an inverted cone therein that is positioned above the salt water thereby facilitating water vapor from the salt water to condense on the inverted cone. An input pipe extends into the tank to fill the tank with the salt water. A condensate pipe extends upwardly into the tank and the condensate pipe is aligned with the inverted cone to collect the condensed water vapor for subsequent use. A stand is vertically oriented and is positioned adjacent to the tank. A reflector is pivotally coupled to the stand and the reflector is exposed to sunlight. The reflector focuses the reflected sunlight onto the tank for heating the tank and thereby facilitate the salt water in the tank to be heated for producing the water vapor.
    Type: Application
    Filed: March 8, 2019
    Publication date: September 10, 2020
    Inventor: Felix Martin
  • Patent number: 10695867
    Abstract: Controlling microstructure in an object created by metal powder additive manufacturing is disclosed. During additive manufacturing of one or more objects using an irradiation beam source system, for each respective layer in a selected range of layers including a cross-sectional area of the one or more objects including the selected object, a duration controller controls actuation of each irradiation device to maintain constant a sum of: an irradiation device melting time, an irradiation device idle time, and a recoating time expended applying a new powder material layer, while otherwise maintaining all other operation parameters of each irradiation device constant.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: June 30, 2020
    Assignee: General Electric Company
    Inventors: Thomas Etter, Matthias Hoebel, Felix Martin Gerhard Roerig
  • Patent number: 10695866
    Abstract: In some cases, an additive manufacturing (AM) system includes: a process chamber for additively manufacturing a component, the process chamber having: a build platform; at least one melting beam scanner configured to emit a melting beam for melting powder on the build platform; an applicator for applying layers of powder to the build platform; and a reservoir for storing powder; and a control system coupled with the set of melting beam scanners, the control system configured to: apply the melting beam to a layer of powder on the build platform along a primary melting path; and apply the melting beam to the layer of powder on the build platform along a re-melting path after applying the melting beam along the primary melting path, the re-melting path overlapping a portion of the primary melting path and applied only in an area proximate a perimeter of the component.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: June 30, 2020
    Assignee: General Electric Company
    Inventors: Felix Martin Gerhard Roerig, Thomas Etter, Matthias Hoebel, Julius Andreas Schurb
  • Patent number: 10688593
    Abstract: A component includes a body, and an interface in the body defining a first and second portion of the body made by different melting beam sources of a multiple melting beam source additive manufacturing system during a single build. The component also includes a channel extending through the body. The channel includes an interface-distant area on opposing sides of the interface, each interface-distant area having a first width. The channel also includes an enlarged width area fluidly communicative with the interface-distant areas and spanning the interface, the enlarged width area having a second width larger than the first width. Any misalignment of the melting beams at the interface is addressed by the enlarged width area, eliminating the problem of reduced cooling fluid flow in the channel.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: June 23, 2020
    Assignee: General Electric Company
    Inventors: Felix Martin Gerhard Roerig, Donnell Eugene Crear, Juan Vicente Haro Gonzalez, Mikhail Pavlov, Dean Andrew Snelling, Jr.
  • Publication number: 20200164468
    Abstract: A method for additive manufacturing an object is disclosed. The method includes, for a first portion of the object to be built in a first overlapping field region of a plurality of melting beams of a metal powder AM system, sequentially forming each layer of the first portion by: forming only a border section of the first portion of the object using a first melting beam of the plurality of melting beams in the first overlapping field region; and forming an internal section of the first portion of the object within the border section using at least one second, different melting beam from the first melting beam in the first overlapping field region. An entirety of an internal edge of the border section of the first portion of the object is overlapped with an entirety of an external edge of the internal section of the first portion of the object.
    Type: Application
    Filed: January 30, 2020
    Publication date: May 28, 2020
    Inventors: Felix Martin Gerhard Roerig, Juan Vicente Haro Gonzalez
  • Patent number: 10646959
    Abstract: Additive manufactured components including sacrificial caps, and methods of forming components including sacrificial caps are disclosed. The additive manufactured components may include a body portion including a first surface, and a feature formed in the body portion. The feature may include an aperture formed through the first surface of the body portion. Additionally, the components may include a sacrificial cap formed integral with at least a portion of the first surface of the body portion. The sacrificial cap may include a conduit in fluid communication with the feature. The sacrificial cap including the conduit may be removed from the body portion to expose the first surface and the aperture of the feature, respectively, after performing one or more post-build processes, such as shot peening, on the component and the sacrificial cap.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: May 12, 2020
    Assignee: General Electric Company
    Inventors: Brendon James Leary, Thomas Etter, Felix Martin Gerhard Roerig, Julius Andreas Schurb
  • Patent number: 10596662
    Abstract: Various embodiments include approaches for controlling an additive manufacturing (AM) process. In some cases, an AM system includes: a process chamber for additively manufacturing a component, the process chamber at least partially housing a plurality of distinct melting beam scanners, each of the distinct melting beam scanners configured to emit a melting beam, wherein each of the distinct melting beam scanners is independently physically movable within a corresponding region of the process chamber; and a control system coupled with the plurality of distinct melting beam scanners, the control system configured to control movement of at least one of the plurality of distinct melting beam scanners within the corresponding region based upon a geometry of the component.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: March 24, 2020
    Assignee: General Electric Company
    Inventors: Juan Vicente Haro Gonzalez, Felix Martin Gerhard Roerig
  • Patent number: 10596803
    Abstract: Additive manufacturing systems (AMS) are disclosed. The AMS may include a build plate positioned directly on a movable build platform, and a recoater device positioned above the build plate. The recoater device may include a blade. Additionally, the AMS may include a calibration system operably connected to the recoater device. The calibration system may include at least one measurement device coupled or positioned adjacent to the recoater device, and at least one computing device operably connected to the measurement device(s). The computing device(s) may be configured to calibrate the recoater device by adjusting a height of the blade of the recoater device relative to a reference surface of a component of the AMS in response to determining a pre-build distance between the blade of the recoater device and the reference surface differs from a desired distance. The pre-build distance may be determined using the measurement device(s).
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: March 24, 2020
    Assignee: General Electric Company
    Inventors: Donnell Eugene Crear, Mikhail Pavlov, Felix Martin Gerhard Roerig, Dean Andrew Snelling, Jr.