Patents by Inventor Felix Perriello

Felix Perriello has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080101868
    Abstract: Bioventing methods create a bacterial treatment zone at a contaminated site by supplying a hydrocarbon food source to the treatment zone, and recirculating the hydrocarbon to the treatment zone. The bioventing methods may inject, circulate, extract and reinject hydrocarbons such as butane or other alkanes to the subsurface at a contaminated site to create a bacterial treatment zone. Contaminated vapors extracted from the soil and/or groundwater may be reintroduced into the site. Hydrocarbons that are not consumed by the bacteria in the treatment zone may be extracted and recovered for recirculation into the treatment zone.
    Type: Application
    Filed: December 31, 2007
    Publication date: May 1, 2008
    Inventor: Felix Perriello
  • Patent number: 7314548
    Abstract: Bioventing systems create a bacterial treatment zone at a contaminated site by supplying a hydrocarbon food source to the treatment zone, and recirculating the hydrocarbon to the treatment zone. The bioventing systems may inject, circulate, extract and reinject hydrocarbons such as butane or other alkanes to the subsurface at a contaminated site to create a bacterial treatment zone. Contaminated vapors extracted from the soil and/or groundwater may be reintroduced into the site. Hydrocarbons that are not consumed by the bacteria in the treatment zone may be extracted and recovered for recirculation into the treatment zone.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: January 1, 2008
    Assignee: Global BioSciences, Inc.
    Inventor: Felix A. Perriello
  • Publication number: 20050274670
    Abstract: Bioventing systems create a bacterial treatment zone at a contaminated site by supplying a hydrocarbon food source to the treatment zone, and recirculating the hydrocarbon to the treatment zone. The bioventing systems may inject, circulate, extract and reinject hydrocarbons such as butane or other alkanes to the subsurface at a contaminated site to create a bacterial treatment zone. Contaminated vapors extracted from the soil and/or groundwater may be reintroduced into the site. Hydrocarbons that are not consumed by the bacteria in the treatment zone may be extracted and recovered for recirculation into the treatment zone.
    Type: Application
    Filed: August 15, 2003
    Publication date: December 15, 2005
    Inventor: Felix Perriello
  • Publication number: 20050199539
    Abstract: Methods and apparatus are disclosed for remediating metal contaminants using hydrocarbons which stimulate the growth of hydrocarbon-utilizing bacteria. The metal contaminants may include heavy metals such as arsenic, antimony, beryllium, cadmium, chromium, copper, lead, mercury, iron, manganese, magnesium, radium, nickel, selenium, silver, thallium and zinc. The hydrocarbon may include alkanes, alkenes, alkynes, poly(alkene)s, poly(alkyne)s, aromatic hydrocarbons, aromatic hydrocarbon polymers and aliphatic hydrocarbons. Butane is a particularly suitable hydrocarbon which stimulates the growth of butane-utilizing bacteria. Remediation may occur in-situ or ex-situ, and may occur under aerobic, anaerobic or dual aerobic/anaerobic conditions. Examples of applications include the remediation of heavy metals, the remediation of arsenic impacted surface water, groundwater and/or soil, the remediation of acid mine drainage, and the treatment of spent metal plating solutions.
    Type: Application
    Filed: February 10, 2005
    Publication date: September 15, 2005
    Applicant: Global BioSciences, Inc.
    Inventor: Felix Perriello
  • Publication number: 20050000154
    Abstract: Apparatus and methods are provided for introducing an alkane to a plant in order to stimulate the plant's growth. Any type of plant may be treated, including potted plants, shrubs, trees, lawns, agricultural crops and the like. In a preferred embodiment, the alkane comprises butane, but other compounds can be used, including methane, ethane and propane. The alkane may be combined with water or another liquid carrier, or plant growth-enhancing additives such as nutrients, insecticides and alkane-utilizing bacteria. To induce aerobic conditions, oxygen-containing gas such as air may be introduced along with the alkane or separately from the alkane. The introduction of alkane may enhance plant growth by increasing the indigenous microbial populations in soil, e.g. bacteria, fungi, protists, and prokaryotes, which may provide benefits such as increased nutrient uptake, faster root development, and reduced heat, drought and cold stress, resulting in enhanced plant growth.
    Type: Application
    Filed: May 24, 2004
    Publication date: January 6, 2005
    Applicant: Global BioSciences, Inc.
    Inventors: Felix Perriello, George DiCesare
  • Publication number: 20040124137
    Abstract: Methods and apparatus are provided for treating agricultural waste with an alkane substrate to stimulate bacterial digestion. The alkane treatment may also reduce odor of the agricultural waste material. The agricultural waste may include animal waste, vegetable material, leaf material, plant material, composting material or waste paper products. The alkane preferably includes butane, propane, methane and/or ethane, with butane being particularly preferred. Methods and apparatus are also provided for recovering plant growth-enhancing material from the treated agricultural waste and for treating soil with alkane-utilizing bacteria and/or an alkane substrate in combination with a carrier material to increase seed, bulb, plant and crop growth.
    Type: Application
    Filed: September 29, 2003
    Publication date: July 1, 2004
    Inventor: Felix A. Perriello
  • Publication number: 20030084609
    Abstract: A method of enhancing plant growth comprises the step of introducing an alkane into a location adjacent to a plant. The alkane can be introduced intermittently, and can be combined with another gas and/or nutrients. The alkane preferably comprises a butane substrate. The butane substrate can stimulate the growth of butane-utilizing bacteria, such as Aeromonas caviae, Stenotrophomonas maltophilia, Micrococcus varians, Aureobacterium esteroaromaticum, Aureobacterium barkeri, Rhodococcus fascians, Nocardia paradoxus, Comamonas acidovorans and Pseudomonas aeruginosa. The alkane can increase the amount of heterotrophic bacteria in the location adjacent to the plant, and thereby accelerate a heterotrophic nitrification process. The butane substrate can also stimulate the growth of butane-utilizing fungi. The method can also enhance the growth protists and/or prokaryotes. A system for enhancing plant growth in accordance with the method is also disclosed.
    Type: Application
    Filed: October 29, 2002
    Publication date: May 8, 2003
    Inventors: Felix A. Perriello, George A. DiCesare, Jeanne M. Perriello