Patents by Inventor Felix Schmitt

Felix Schmitt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11935667
    Abstract: A thermionic energy conversion system, preferably including one or more electron collectors, interfacial layers, encapsulation, and/or electron emitters. A method for manufacturing the thermionic energy conversion system. A method of operation for a thermionic energy conversion system, preferably including receiving power, emitting electrons, and receiving the emitted electrons, and optionally including convectively transferring heat.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: March 19, 2024
    Assignee: Spark Thermionics, Inc.
    Inventors: Kyana Van Houten, Lucas Heinrich Hess, Jared William Schwede, Felix Schmitt
  • Patent number: 11934176
    Abstract: A method for controlling a robot. The method includes receiving an indication of a target configuration to be reached from an initial configuration of the robot, determining a coarse-scale value map by value iteration, starting from an initial coarse-scale state and until the robot reaches the target configuration or a maximum number of fine-scale states has been reached, determining a fine-scale sub-goal from the coarse-scale value map, performing, by an actuator of the robot, fine-scale control actions to reach the determined fine-scale sub-goal and obtaining sensor data to determine the fine-scale states reached, starting from a current fine-scale state of the robot and until the robot reaches the determined fine-scale sub-goal, the robot transitions to a different coarse-scale state, or a maximum sequence length of the sequence of fine-scale states has been reached and determining the next coarse-scale state.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: March 19, 2024
    Assignee: ROBERT BOSCH GMBH
    Inventors: Jan Guenter Woehlke, Felix Schmitt, Herke Van Hoof
  • Publication number: 20240010236
    Abstract: A method for selecting a driving maneuver to be carried out by an at least semi-autonomously driving vehicle is disclosed. The method includes (i) using measurement data of at least one sensor carried by the vehicle, creating a representation of the situation the vehicle is in, (ii) mapping the representation of the situation to a probability distribution by way of a trained machine learning model, which probability distribution specifies a probability for every driving maneuver from a predefined catalog of available driving maneuvers, with which said driving maneuver is carried out, (iii) selecting a driving maneuver from the probability distribution as the driving maneuver to be carried out, (iv) in addition to using at least one aspect of the situation the vehicle is in, a subset of driving maneuvers which are disallowed in this situation is determined, and (v) this disallowed driving maneuver is prevented from being carried out.
    Type: Application
    Filed: November 30, 2021
    Publication date: January 11, 2024
    Inventors: Felix Schmitt, Martin Stoll, Johannes Goth, Holger Andreas Banzhaf, Johannes Maximilian Doellinger, Michael Hanselmann
  • Publication number: 20230332768
    Abstract: A burner system, preferably including input plumbing, a combustion region, and an exhaust section. In some embodiments, the burner system can include, be attached to, be configured to couple with, and/or be otherwise associated with a thermionic energy converter (TEC). A method of burner system operation, preferably including operating the burner system in a combustion mode and optionally including operating a TEC.
    Type: Application
    Filed: December 21, 2022
    Publication date: October 19, 2023
    Inventors: Felix Schmitt, Jared William Schwede, David Rich, Tyler Sandberg
  • Patent number: 11688593
    Abstract: A system for thermionic energy generation, preferably including one or more thermionic energy converters, and optionally including one or more power inputs, airflow modules, and/or electrical loads. A thermionic energy converter, preferably including an emitter module, a collector module, and/or a seal, and optionally including a spacer. The thermionic energy converter preferably defines a chamber and/or a heating cavity. A method for thermionic energy generation, preferably including receiving power, emitting electrons, and/or receiving the emitted electrons, and optionally including convectively transferring heat.
    Type: Grant
    Filed: July 15, 2022
    Date of Patent: June 27, 2023
    Assignee: Spark Thermionics, Inc.
    Inventors: Felix Schmitt, Jared William Schwede, Adam Lorimer
  • Publication number: 20230128941
    Abstract: A method for controlling an agent. The method includes training a neural network using training data that contain, for a multiplicity of agents, examples of a behavior of the agents, the output of the neural network including a prediction of a behavior and being a function of network parameters that are trained in common for all training data, and being a function of a further parameter that is trained individually for each of the agents of the multiplicity of agents; fitting of a probability distribution to the values of the further parameter for the agents that result from the training; sampling a value from the probability distribution for a further agent in the environment of the agent; and controlling the agent, taking into account a prediction of the behavior of the further agent that the neural network outputs for the sampled value for the further agent.
    Type: Application
    Filed: October 10, 2022
    Publication date: April 27, 2023
    Inventor: Felix Schmitt
  • Publication number: 20230130711
    Abstract: A system for thermionic energy generation, preferably including one or more thermionic energy converters, and optionally including one or more power inputs, airflow modules, and/or electrical loads. A thermionic energy converter, preferably including an emitter module, a collector module, and/or a seal, and optionally including a spacer. The thermionic energy converter preferably defines a chamber and/or a heating cavity. A method for thermionic energy generation, preferably including receiving power, emitting electrons, and/or receiving the emitted electrons, and optionally including convectively transferring heat.
    Type: Application
    Filed: July 15, 2022
    Publication date: April 27, 2023
    Inventors: Felix Schmitt, Jared William Schwede, Adam Lorimer
  • Publication number: 20230090127
    Abstract: A method for controlling an agent. The method includes obtaining numerical values of a first and second set of state variables, which together represent a current full state of the agent, and the numerical values of the first set of state variables represent a current partial state of the robot; determining a state value prior comprising, for potential subsequent partial states following the current partial state, an evaluation of the subsequent partial states in terms of achieving a goal to be attained by the agent; supplying an input comprising a local crop of the state value prior and the numerical values of the second set of state variables representing, together with the numerical values of the first set of state variables, the current full state to a neural network configured to output an evaluation of control actions and controlling the agent in accordance with control signals.
    Type: Application
    Filed: August 30, 2022
    Publication date: March 23, 2023
    Inventors: Jan Guenter Woehlke, Felix Schmitt, Herke van Hoof
  • Patent number: 11430644
    Abstract: A system for thermionic energy generation, preferably including one or more thermionic energy converters, and optionally including one or more power inputs, airflow modules, and/or electrical loads. A thermionic energy converter, preferably including an emitter module, a collector module, and/or a seal, and optionally including a spacer. The thermionic energy converter preferably defines a chamber and/or a heating cavity. A method for thermionic energy generation, preferably including receiving power, emitting electrons, and/or receiving the emitted electrons, and optionally including convectively transferring heat.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: August 30, 2022
    Assignee: Spark Thermionics, Inc.
    Inventors: Felix Schmitt, Jared William Schwede, Adam Lorimer
  • Publication number: 20220197227
    Abstract: A computer-implemented method and device for activating a technical unit. The device includes an input for input data from at least one sensor, an output for activating the technical unit using an activation signal, and a computing device which activates the technical unit as a function of the input data. A state of at least one part of the technical unit or of surroundings is determined as a function of input data. At least one action is determined as a function of the state and of a strategy for the technical unit. Technical unit being activated to carry out the at least one action. The strategy, represented by an artificial neural network, is learned with a reinforcement learning algorithm in interaction with the technical unit or with the surroundings as a function of the at least one feedback signal. The feedback signal is determined as a function of a target-setting.
    Type: Application
    Filed: March 24, 2020
    Publication date: June 23, 2022
    Inventors: Jan Guenter Woehlke, Felix Schmitt
  • Publication number: 20220115159
    Abstract: A thermionic energy conversion system, preferably including one or more electron collectors, interfacial layers, encapsulation, and/or electron emitters. A method for manufacturing the thermionic energy conversion system. A method of operation for a thermionic energy conversion system, preferably including receiving power, emitting electrons, and receiving the emitted electrons, and optionally including convectively transferring heat.
    Type: Application
    Filed: December 20, 2021
    Publication date: April 14, 2022
    Inventors: Kyana Van Houten, Lucas Heinrich Hess, Jared William Schwede, Felix Schmitt
  • Patent number: 11264144
    Abstract: A thermionic energy conversion system, preferably including one or more electron collectors, interfacial layers, encapsulation, and/or electron emitters. A method for manufacturing the thermionic energy conversion system. A method of operation for a thermionic energy conversion system, preferably including receiving power, emitting electrons, and receiving the emitted electrons, and optionally including convectively transferring heat.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: March 1, 2022
    Assignee: Spark Thermionics, Inc.
    Inventors: Kyana Van Houten, Lucas Heinrich Hess, Jared William Schwede, Felix Schmitt
  • Publication number: 20210350947
    Abstract: A thermionic energy conversion system, preferably including one or more electron collectors, interfacial layers, encapsulation, and/or electron emitters. A method for manufacturing the thermionic energy conversion system. A method of operation for a thermionic energy conversion system, preferably including receiving power, emitting electrons, and receiving the emitted electrons, and optionally including convectively transferring heat.
    Type: Application
    Filed: May 6, 2021
    Publication date: November 11, 2021
    Inventors: Kyana Van Houten, Lucas Heinrich Hess, Jared William Schwede, Felix Schmitt
  • Publication number: 20210341885
    Abstract: A method of training a control strategy for a control. An exploration strategy for a current version of the control strategy is determined in each of several iterations. Several simulation runs are carried out, in each of which an action is selected in accordance with the exploration strategy, and it being checked if the selected action is safe, until a safe action has been selected or a maximum number of actions greater than or equal to two has been selected. A follow-up state of the state in the sequence of states is ascertained. The sequence of states are collected as data of the simulation run; for the iteration. The value of a loss function is ascertained over the data of the executed simulation runs and the control strategy is adapted so that the value of the loss function is reduced.
    Type: Application
    Filed: March 3, 2021
    Publication date: November 4, 2021
    Inventors: Felix Schmitt, Johannes Maximilian Doellinger
  • Publication number: 20210341904
    Abstract: A method for controlling a robot. The method includes receiving an indication of a target configuration to be reached from an initial configuration of the robot, determining a coarse-scale value map by value iteration, starting from an initial coarse-scale state and until the robot reaches the target configuration or a maximum number of fine-scale states has been reached, determining a fine-scale sub-goal from the coarse-scale value map, performing, by an actuator of the robot, fine-scale control actions to reach the determined fine-scale sub-goal and obtaining sensor data to determine the fine-scale states reached, starting from a current fine-scale state of the robot and until the robot reaches the determined fine-scale sub-goal, the robot transitions to a different coarse-scale state, or a maximum sequence length of the sequence of fine-scale states has been reached and determining the next coarse-scale state.
    Type: Application
    Filed: April 15, 2021
    Publication date: November 4, 2021
    Inventors: Jan Guenter Woehlke, Felix Schmitt, Herke Van Hoof
  • Publication number: 20200321203
    Abstract: A system for thermionic energy generation, preferably including one or more thermionic energy converters, and optionally including one or more power inputs, airflow modules, and/or electrical loads. A thermionic energy converter, preferably including an emitter module, a collector module, and/or a seal, and optionally including a spacer. The thermionic energy converter preferably defines a chamber and/or a heating cavity. A method for thermionic energy generation, preferably including receiving power, emitting electrons, and/or receiving the emitted electrons, and optionally including convectively transferring heat.
    Type: Application
    Filed: May 26, 2020
    Publication date: October 8, 2020
    Inventors: Felix Schmitt, Jared William Schwede, Adam Lorimer
  • Patent number: 10699886
    Abstract: A system for thermionic energy generation, preferably including one or more thermionic energy converters, and optionally including one or more power inputs, airflow modules, and/or electrical loads. A thermionic energy converter, preferably including an emitter module, a collector module, and/or a seal, and optionally including a spacer. The thermionic energy converter preferably defines a chamber and/or a heating cavity. A method for thermionic energy generation, preferably including receiving power, emitting electrons, and/or receiving the emitted electrons, and optionally including convectively transferring heat.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: June 30, 2020
    Assignee: Spark Thermionics, Inc.
    Inventors: Felix Schmitt, Jared William Schwede, Adam Lorimer
  • Publication number: 20200144039
    Abstract: A system for thermionic energy generation, preferably including one or more thermionic energy converters, and optionally including one or more power inputs, airflow modules, and/or electrical loads. A thermionic energy converter, preferably including an emitter module, a collector module, and/or a seal, and optionally including a spacer. The thermionic energy converter preferably defines a chamber and/or a heating cavity. A method for thermionic energy generation, preferably including receiving power, emitting electrons, and/or receiving the emitted electrons, and optionally including convectively transferring heat.
    Type: Application
    Filed: November 6, 2019
    Publication date: May 7, 2020
    Inventors: Felix Schmitt, Jared William Schwede, Adam Lorimer
  • Patent number: 10642428
    Abstract: A method includes obtaining a capacitive function of ground plane displacement and gap distance, and optimizing, using the capacitive function, an optimization function to obtain multiple slice lengths. The slice lengths correspond to multiple gap distances between a first sensor electrode and a second sensor electrode. The method further includes defining a sensor electrode shape using slice lengths and gap distances, defining a sensor electrode pattern based on the sensor electrode shape, and storing the sensor electrode pattern.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: May 5, 2020
    Assignee: Synpatics Incorporated
    Inventors: Mihai Bulea, Felix Schmitt
  • Publication number: 20190391684
    Abstract: A method includes obtaining a capacitive function of ground plane displacement and gap distance, and optimizing, using the capacitive function, an optimization function to obtain multiple slice lengths. The slice lengths correspond to multiple gap distances between a first sensor electrode and a second sensor electrode. The method further includes defining a sensor electrode shape using slice lengths and gap distances, defining a sensor electrode pattern based on the sensor electrode shape, and storing the sensor electrode pattern.
    Type: Application
    Filed: June 25, 2018
    Publication date: December 26, 2019
    Applicant: SYNAPTICS INCORPORATED
    Inventors: Mihai Bulea, Felix Schmitt