Patents by Inventor Felix Tsui

Felix Tsui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12156403
    Abstract: In some embodiments, the present disclosure relates to an integrated chip (IC), including a substrate, a floating gate electrode disposed over the substrate, a contact etch stop layer (CESL) structure disposed over the floating gate electrode, an insulating stack separating the floating gate electrode from the CESL structure, the insulating stack including a first resist protective layer disposed over the floating gate electrode, a second resist protective layer disposed over the first resist protective layer, and an insulating layer separating the first resist protective layer from the second resist protective layer.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: November 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Shun Lo, Tai-Yi Wu, Shih-Hsien Chen, Yingkit Felix Tsui
  • Publication number: 20240385372
    Abstract: An edge coupler has a wide end, a narrow end, and a tapering thickness. The narrow end is coupled to a waveguide in a photonic integrated circuit (PIC). The wide end is coupled to an optical transmitter or receiver. The edge coupler thickens by tapering downward into the buried oxide layer of a BOX substrate. An upper surface of the edge coupler may be planar. A pedestal may be formed in the oxide layer so that a laser diode mounted on the pedestal will be vertically aligned to the edge coupler. Alternatively, the pedestal may be formed in a substrate under the oxide layer so that the core of an optical fiber mounted on the pedestal will be vertically aligned to the edge coupler. The pedestal may be in a cavity that facilitates horizontal alignment between the laser diode, optical fiber, or other such device and the edge coupler.
    Type: Application
    Filed: May 19, 2023
    Publication date: November 21, 2024
    Inventors: Hau-Yan Lu, Wei-Kang Liu, Yingkit Felix Tsui
  • Publication number: 20240385375
    Abstract: In some embodiments, the present disclosure relates to a device having a first waveguide and a second waveguide arranged over a substrate. The first waveguide has a first input terminal and a first output terminal, wherein the first input terminal is configured to receive light. The second waveguide is arranged laterally beside the first waveguide and has a second input terminal and a second output terminal. The second input terminal of the second waveguide is configured to receive light. The first waveguide further includes a first portion that has a different structure than surrounding portions of the first waveguide. The second waveguide further includes a second portion that has a different structure than surrounding portions of the second waveguide. The first waveguide is spaced apart at a maximum distance from the second waveguide at the first portion and the second portion.
    Type: Application
    Filed: July 26, 2024
    Publication date: November 21, 2024
    Inventors: Min-Hsiang Hsu, Cheng-Tse Tang, Hau-Yan Lu, Yingkit Felix Tsui
  • Publication number: 20240377659
    Abstract: The present disclosure provides an optical modulating structure. The optical modulating structure includes a lower member extending along an insulating layer, a first protrusion over the lower member, and a second protrusion over the lower member and separated from the first protrusion. A first mask layer is formed over the optical modulating structure, wherein the first mask layer covers the second protrusion and a first portion of the lower member between the first protrusion and the second protrusion. A first doping region is formed in an exposed portion of the lower member and at least a portion of an exposed sidewall of the first protrusion. A dielectric layer is formed between the first protrusion and the second protrusion. A method for manufacturing the optical modulating structure is also provided.
    Type: Application
    Filed: May 10, 2023
    Publication date: November 14, 2024
    Inventors: WEN-SHUN LO, YINGKIT FELIX TSUI, JING-HWANG YANG
  • Publication number: 20240379808
    Abstract: A semiconductor device includes a substrate having a P-well region, an N-well region disposed on either side of and abutting the P-well region, and a deep N-well region disposed beneath and abutting both the P-well region and at least part of the N-well region on either side of the P-well region. The semiconductor device further includes a first conductive layer formed over a cathode region of the P-well region, where a Schottky barrier is formed at a junction of the first conductive layer and the P-well region. The semiconductor device further includes a second conductive layer formed over anode regions of the P-well region, where the anode regions are disposed on either side of the cathode region.
    Type: Application
    Filed: July 22, 2024
    Publication date: November 14, 2024
    Inventors: Wen-Shun Lo, Yu-Chi Chang, Yingkit Felix Tsui
  • Patent number: 12140796
    Abstract: In some embodiments, the present disclosure relates to a device having a first waveguide and a second waveguide arranged over a substrate. The first waveguide has a first input terminal and a first output terminal, wherein the first input terminal is configured to receive light. The second waveguide is arranged laterally beside the first waveguide and has a second input terminal and a second output terminal. The second input terminal of the second waveguide is configured to receive light. The first waveguide further includes a first portion that has a different structure than surrounding portions of the first waveguide. The second waveguide further includes a second portion that has a different structure than surrounding portions of the second waveguide. The first waveguide is spaced apart at a maximum distance from the second waveguide at the first portion and the second portion.
    Type: Grant
    Filed: August 3, 2021
    Date of Patent: November 12, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Min-Hsiang Hsu, Cheng-Tse Tang, Hau-Yan Lu, Yingkit Felix Tsui
  • Publication number: 20240369764
    Abstract: A semiconductor structure includes a grating coupler structure, a circuit component separated from the grating coupler structure, an inter level dielectric layer, a capping layer over the inter level dielectric layer, and a passivation layer over the capping layer. The inter level dielectric layer has a first refractive index, the capping layer has second refractive index, and the passivation layer has a third refractive index. The second refractive index is greater than the first refractive index, and is greater than the third refractive index.
    Type: Application
    Filed: July 21, 2024
    Publication date: November 7, 2024
    Inventors: CHIH-TSUNG SHIH, WEI-KANG LIU, SUI-YING HSU, JING-HWANG YANG, YINGKIT FELIX TSUI
  • Publication number: 20240361524
    Abstract: Some implementations described herein include a photonics integrated circuit device including a photonics structure. The photonics structure includes a waveguide structure and an optical attenuator structure. In some implementation, the optical attenuator structure is formed on an end region of the waveguide structure and includes a metal material or a doped material. In some implementations, the optical attenuator structure includes a gaussian doping profile within a portion of the waveguide structure. The optical attenuator structure may absorb electromagnetic waves at the end of the waveguide structure with an efficiency that is improved relative to a spiral optical attenuator structure or metal cap optical attenuator structure.
    Type: Application
    Filed: July 8, 2024
    Publication date: October 31, 2024
    Inventors: Wei-kang LIU, Chih-Tsung SHIH, Hau-Yan LU, YingKit Felix TSUI, Lee-Shian JENG
  • Publication number: 20240353625
    Abstract: Some embodiments relate to an integrated chip (IC) including a handle substrate; a semiconductor layer comprising a grating coupler region and an edge coupler region; an insulative layer between the handle substrate and the semiconductor layer; a grating coupler in the grating coupler region comprising a plurality of trenches arranged in the semiconductor layer; and an edge coupler in the edge coupler region of the semiconductor layer including: a base structure having an end proximate to an edge of the insulative layer, and tapered sidewalls extending laterally from the end; and an upper structure extending over the base structure, the upper structure having an end proximate to the edge of the insulative layer, and tapered sidewalls extending laterally from the end between the tapered sidewalls of the base structure; where the handle substrate continuously extends from directly beneath the plurality of trenches to directly beneath the upper structure.
    Type: Application
    Filed: April 18, 2023
    Publication date: October 24, 2024
    Inventors: Hau-Yan Lu, Wei-Kang Liu, Yingkit Felix Tsui
  • Publication number: 20240353617
    Abstract: A waveguide structure and an optical modulator structure of a photonic integrated circuit are formed in a dielectric region above a substrate of a semiconductor device. Openings are then formed through the dielectric region and to the substrate so that material can be removed from the substrate to form air gaps between the substrate and the dielectric region. The openings are then sealed by depositing dielectric material in the openings. Sealing the openings reduces the likelihood of exposure of the dielectric region and other regions of the semiconductor device to exposure to environmental elements such as humidity and oxygen. The reduced likelihood of exposure to these environmental elements, due to sealing the openings, may reduce the likelihood and/or rate of formation of defects in the dielectric region and the other regions of the semiconductor device.
    Type: Application
    Filed: April 21, 2023
    Publication date: October 24, 2024
    Inventors: Wen-Shun LO, Jing-Hwang YANG, YingKit Felix TSUI
  • Patent number: 12124083
    Abstract: A semiconductor structure includes a substrate, a grating coupler structure over the substrate, a multi-layers film structure over the grating coupler structure. The multi-layers film structure include a first layer including a first refractive index, a second layer over the first layer and including a second refractive index and a third layer over the second layer and including a third refractive index. The second refractive index is greater than the first refractive index and is greater than the third refractive index of the third layer, and a thickness of each layer of the multi-layers film structure is within a range from ?/4 to ?2, ? is a wavelength of light.
    Type: Grant
    Filed: August 3, 2022
    Date of Patent: October 22, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chih-Tsung Shih, Wei-Kang Liu, Sui-Ying Hsu, Jing-Hwang Yang, Yingkit Felix Tsui
  • Publication number: 20240345320
    Abstract: Various embodiments of the present disclosure are directed towards a photonic device including a temperature adjustment element. A first waveguide overlies an insulating layer. A second waveguide overlies the insulating layer. The temperature adjustment element includes a heater structure aligned with a segment of the first waveguide and a cooler structure aligned with a segment of the second waveguide. The heater structure is configured to increase a temperature of the segment of the first waveguide to a first temperature. The cooler structure is configured to reduce a temperature of the segment of the second waveguide to a second temperature less than the first temperature.
    Type: Application
    Filed: April 14, 2023
    Publication date: October 17, 2024
    Inventors: Wei-Kang Liu, Hau-Yan Lu, Yingkit Felix Tsui
  • Publication number: 20240329435
    Abstract: A method of fabricating an optical device comprises steps of forming a silicon-based optical component in a substrate; depositing an ILD layer on the substrate and the silicon-based optical component; forming a thermal tuning assembly comprising a first metallic material in the ILD layer and above the silicon-based optical component, wherein the thermal tuning assembly comprises a core above the silicon-based optical component, a plurality of grids spaced apart from the core, and a pair of neck portions connecting the grids to the core, wherein a width of a strip in each grid is greater than a width of the core; forming at least one conductive plug comprising the first metallic material penetrating the ILD layer and coupled to the silicon-based optical component; and forming a plurality of conductive lines comprising a second metallic material coupled to the thermal tuning assembly.
    Type: Application
    Filed: March 28, 2023
    Publication date: October 3, 2024
    Inventors: Wen-Shun LO, Jing-Hwang YANG, Yingkit Felix TSUI
  • Publication number: 20240329298
    Abstract: An integrated chip including a base dielectric layer and a multi-tiered semiconductor waveguide layer over the base dielectric layer. The multi-tiered semiconductor waveguide layer has a first waveguide tier having a first width at a first height over the base dielectric layer. The multi-tiered semiconductor waveguide layer has a second waveguide tier having a second width, greater than the first width, at a second height, less than the first height, over the base dielectric layer. A cladding layer is over the multi-tiered semiconductor waveguide layer. A multi-tiered conductive heater layer is over the cladding layer. The multi-tiered conductive heater layer has a first heater tier over the first waveguide tier. The multi-tiered conductive heater layer has a pair of second heater tiers at the first height, over the second waveguide tier, and on opposite sides of the first waveguide tier.
    Type: Application
    Filed: April 3, 2023
    Publication date: October 3, 2024
    Inventors: Wei-Kang Liu, Hau-Yan Lu, Ying Kit Felix Tsui
  • Patent number: 12107136
    Abstract: A semiconductor device includes a substrate having a P-well region, an N-well region disposed on either side of and abutting the P-well region, and a deep N-well region disposed beneath and abutting both the P-well region and at least part of the N-well region on either side of the P-well region. The semiconductor device further includes a first conductive layer formed over a cathode region of the P-well region, where a Schottky barrier is formed at a junction of the first conductive layer and the P-well region. The semiconductor device further includes a second conductive layer formed over anode regions of the P-well region, where the anode regions are disposed on either side of the cathode region.
    Type: Grant
    Filed: May 26, 2022
    Date of Patent: October 1, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wen-Shun Lo, Yu-Chi Chang, Yingkit Felix Tsui
  • Publication number: 20240321723
    Abstract: Some implementations described herein provide techniques and apparatuses for forming a semiconductor die including a discharge management structure. The discharge management structure may include contact structures (e.g., vertical interconnect access structures, or “vias”) connecting a metal layer to electrode layers of a capacitor structure and to a substrate below the capacitor structure. The contact structures have different cross-sectional areas that, based on Kirchhoff's law, increase a voltage drop between the capacitor structure and the silicon substrate. The voltage drop may reduce a likelihood of an electrical discharge by the capacitor structure that causes damage to the metal layer. By reducing the likelihood of damage to the metal layer, defects that may be associated with vertical interconnect access induced metal island corrosion may be reduced.
    Type: Application
    Filed: March 20, 2023
    Publication date: September 26, 2024
    Inventors: Shu-Hui SU, Hsin-Li CHENG, YingKit Felix TSUI
  • Publication number: 20240310579
    Abstract: A method for forming an optical waveguide structure includes following operations. A substrate is received. A semiconductor layer is formed on the substrate. The semiconductor layer is patterned to form at least a waveguide in the substrate and at least a trench in the semiconductor layer. A first gap-filling operation is performed to form a first dielectric portion in the trench. A second gap-filling operation is performed to form a second dielectric portion over the first dielectric portion. An air seam is sealed within the second dielectric portion. A third gap-filling operation is performed to form a third dielectric portion over the second dielectric portion.
    Type: Application
    Filed: May 24, 2024
    Publication date: September 19, 2024
    Inventors: CHIH-TSUNG SHIH, HAU-YAN LU, WEI-KANG LIU, YINGKIT FELIX TSUI
  • Publication number: 20240304662
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip including a conductive base layer overlying a semiconductor substrate. A plurality of conductive pillar structures vertically extending from the conductive base layer in a direction away from the semiconductor substrate. The conductive pillar structures are laterally offset from one another. A plurality of conductive layers and a plurality of capacitor dielectric layers are disposed over the conductive pillar structures. The conductive layers and the capacitor dielectric layers are stacked alternatingly with one another. The conductive layers and the capacitor dielectric layers laterally wrap around outer perimeters of the conductive pillar structures.
    Type: Application
    Filed: June 7, 2023
    Publication date: September 12, 2024
    Inventor: Yingkit Felix Tsui
  • Patent number: 12085751
    Abstract: Some implementations described herein include a photonics integrated circuit device including a photonics structure. The photonics structure includes a waveguide structure and an optical attenuator structure. In some implementation, the optical attenuator structure is formed on an end region of the waveguide structure and includes a metal material or a doped material. In some implementations, the optical attenuator structure includes a gaussian doping profile within a portion of the waveguide structure. The optical attenuator structure may absorb electromagnetic waves at the end of the waveguide structure with an efficiency that is improved relative to a spiral optical attenuator structure or metal cap optical attenuator structure.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: September 10, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-kang Liu, Chih-Tsung Shih, Hau-Yan Lu, YingKit Felix Tsui, Lee-Shian Jeng
  • Publication number: 20240264371
    Abstract: Various embodiments of the present disclosure are directed towards a semiconductor package comprising optically coupled integrated circuit (IC) chips. A first IC chip and a second IC chip overlie a substrate at a center of the substrate. A photonic chip overlies the first and second IC chips and is electrically coupled to the second IC chip. A laser device chip overlies the substrate, adjacent to the photonic chip and the second IC chip, at a periphery of the substrate. The photonic chip is configured to modulate a laser beam from the laser device chip in accordance with an electrical signal from the second IC chip and to provide the modulated laser beam to the first IC chip. This facilitates optical communication between the first IC chip to the second IC chip. Various embodiments of the present disclosure are further directed towards simultaneously aligning and bonding constituents of the semiconductor package.
    Type: Application
    Filed: April 3, 2024
    Publication date: August 8, 2024
    Inventors: Chih-Tsung Shih, Hau-Yan Lu, Wei-Kang Liu, Yingkit Felix Tsui