Patents by Inventor Feng-Chi Hung

Feng-Chi Hung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210366956
    Abstract: Various embodiments of the present application are directed towards image sensors including composite backside illuminated (CBSI) structures to enhance performance. In some embodiments, a first trench isolation structure extends into a backside of a substrate to a first depth and comprises a pair of first trench isolation segments. A photodetector is in the substrate, between and bordering the first trench isolation segments. A second trench isolation structure is between the first trench isolation segments and extends into the backside of the substrate to a second depth less than the first depth. The second trench isolation structure comprises a pair of second trench isolation segments. An absorption enhancement structure overlies the photodetector, between the second trench isolation segments, and is recessed into the backside of the semiconductor substrate. The absorption enhancement structure and the second trench isolation structure collectively define a CBSI structure.
    Type: Application
    Filed: August 4, 2021
    Publication date: November 25, 2021
    Inventors: Wei Chuang Wu, Dun-Nian Yaung, Feng-Chi Hung, Jen-Cheng Liu, Jhy-Jyi Sze, Keng-Yu Chou, Yen-Ting Chiang, Ming-Hsien Yang, Chun-Yuan Chen
  • Publication number: 20210288029
    Abstract: In some embodiments, the present disclosure relates to an integrated chip structure. The integrated chip structure includes a first plurality of interconnects arranged within a first inter-level dielectric (ILD) structure on a first substrate, and a second plurality of interconnects arranged within a second ILD structure between the first ILD structure and a second substrate. A bonding structure is disposed within a recess extending through the second substrate. A connector structure is vertically between the first plurality of interconnects and the second plurality of interconnects. The second plurality of interconnects include a first interconnect directly contacting the bonding structure. The second plurality of interconnects also include one or more extensions extending from directly below the first interconnect to laterally outside of the first interconnect and directly above the connector structure, as viewed along a cross-sectional view.
    Type: Application
    Filed: May 28, 2021
    Publication date: September 16, 2021
    Inventors: Sin-Yao Huang, Chun-Chieh Chuang, Ching-Chun Wang, Sheng-Chau Chen, Dun-Nian Yaung, Feng-Chi Hung, Yung-Lung Lin
  • Publication number: 20210280620
    Abstract: In some embodiments, a pixel sensor is provided. The pixel sensor includes a first photodetector arranged in a semiconductor substrate. A second photodetector is arranged in the semiconductor substrate, where a first substantially straight line axis intersects a center point of the first photodetector and a center point of the second photodetector. A floating diffusion node is arranged in the semiconductor substrate at a point that is a substantially equal distance from the first photodetector and the second photodetector. A pick-up well contact region is arranged in the semiconductor substrate, where a second substantially straight line axis that is substantially perpendicular to the first substantially straight line axis intersects a center point of the floating diffusion node and a center point of the pick-up well contact region.
    Type: Application
    Filed: May 5, 2021
    Publication date: September 9, 2021
    Inventors: Seiji Takahashi, Chen-Jong Wang, Dun-Nian Yaung, Feng-Chi Hung, Feng-Jia Shiu, Jen-Cheng Liu, Jhy-Jyi Sze, Chun-Wei Chang, Wei-Cheng Hsu, Wei Chuang Wu, Yimin Huang
  • Patent number: 11088192
    Abstract: In some embodiments, the present disclosure relates to a method of forming an integrated chip (IC) structure. The method may be performed by forming a first integrated chip die having one or more semiconductor devices within a first substrate, and forming a passivation layer over the first integrated chip die. The passivation layer is selectively etched to form interior sidewalls defining a first opening, and a conductive material is deposited over the passivation layer and within the first opening. The conductive material is patterned to define a conductive blocking structure that laterally extends past the one or more semiconductor devices in opposing directions. The first integrated chip die is bonded to a second integrated chip die having an array of image sensing elements within a second substrate.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: August 10, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Ying Ho, Ching-Chun Wang, Dun-Nian Yaung, Feng-Chi Hung, Yan-Chih Lu
  • Publication number: 20210233813
    Abstract: A stacked integrated circuit (IC) device and a method are disclosed. The stacked IC device includes a first semiconductor element. The first substrate includes a dielectric block in the first substrate; and a plurality of first conductive features formed in first inter-metal dielectric layers over the first substrate. The stacked IC device also includes a second semiconductor element bonded on the first semiconductor element. The second semiconductor element includes a second substrate and a plurality of second conductive features formed in second inter-metal dielectric layers over the second substrate. The stacked IC device also includes a conductive deep-interconnection-plug coupled between the first conductive features and the second conductive features. The conductive deep-interconnection-plug is isolated by dielectric block, the first inter-metal-dielectric layers and the second inter-metal-dielectric layers.
    Type: Application
    Filed: April 12, 2021
    Publication date: July 29, 2021
    Inventors: Shu-Ting Tsai, Jeng-Shyan Lin, Dun-Nian Yaung, Jen-Cheng Liu, Feng-Chi Hung, Chih-Hui Huang, Sheng-Chau Chen, Shih Pei Chou, Chia-Chieh Lin
  • Patent number: 11069736
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a first interconnect wire disposed within a dielectric structure on a substrate. A bond pad has a lower surface contacting the first interconnect wire. A via layer is vertically between the first interconnect wire and a second interconnect wire within the dielectric structure. The via layer includes a plurality of support vias having a first size and a plurality of additional vias having a second size that is smaller than the first size. The plurality of support vias extend from directly under the lower surface of the bond pad to laterally past outermost edges of the lower surface of the bond pad.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: July 20, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sin-Yao Huang, Ching-Chun Wang, Dun-Nian Yaung, Feng-Chi Hung
  • Publication number: 20210210532
    Abstract: Some embodiments are directed towards an image sensor device. A photodetector is disposed in a semiconductor substrate, and a transfer transistor is disposed over photodetector. The transfer transistor includes a transfer gate having a lateral portion extending over a frontside of the semiconductor substrate and a vertical portion extending to a first depth below the frontside of the semiconductor substrate. A gate dielectric separates the lateral portion and the vertical portion from the semiconductor substrate. A backside trench isolation structure extends from a backside of the semiconductor substrate to a second depth below the frontside of the semiconductor substrate. The backside trench isolation structure laterally surrounds the photodetector, and the second depth is less than the first depth such that a lowermost portion of the vertical portion of the transfer transistor has a vertical overlap with an uppermost portion of the backside trench isolation structure.
    Type: Application
    Filed: January 3, 2020
    Publication date: July 8, 2021
    Inventors: Feng-Chi Hung, Dun-Nian Yaung, Jen-Cheng Liu, Wei Chuang Wu, Yen-Yu Chen, Chih-Kuan Yu
  • Publication number: 20210193712
    Abstract: A photosensing pixel includes a substrate, a photosensing region, a floating diffusion region, a transfer gate and a control electrode. The photosensing region is located within the substrate. The floating diffusion region is located within the substrate aside the photosensing region. The transfer gate is disposed on the substrate and extending into the photosensing region. The control electrode is located on the substrate and extending into the floating diffusion region.
    Type: Application
    Filed: March 2, 2020
    Publication date: June 24, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Sin-Yao Huang, Feng-Chi Hung, Chen-Hsien Lin, Tzu-Hsuan Hsu, Yan-Chih Lu
  • Patent number: 11024602
    Abstract: In some embodiments, the present disclosure relates to a method of forming a multi-dimensional integrated chip. The method includes forming a first plurality of interconnect layers within a first dielectric structure on a front-side of a first substrate and forming a second plurality of interconnect layers within a second dielectric structure on a front-side of a second substrate. A first redistribution layer coupled to the first plurality of interconnect layers is bonded to a second redistribution layer coupled to the second plurality of interconnect layers along an interface. A recess is formed within a back-side of the second substrate and over the second plurality of interconnect layers. A bond pad is formed within the recess. The bond pad is laterally separated from the first redistribution layer by a non-zero distance.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: June 1, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Sin-Yao Huang, Chun-Chieh Chuang, Ching-Chun Wang, Sheng-Chau Chen, Dun-Nian Yaung, Feng-Chi Hung, Yung-Lung Lin
  • Patent number: 11011567
    Abstract: An image sensor structure that includes a first semiconductor substrate having a plurality of imaging sensors; a first interconnect structure formed on the first semiconductor substrate; a second semiconductor substrate having a logic circuit; a second interconnect structure formed on the second semiconductor substrate, wherein the first and the second semiconductor substrates are bonded together in a configuration that the first and second interconnect structures are sandwiched between the first and second semiconductor substrates; and a backside deep contact (BDCT) feature extended from the first interconnect structure to the second interconnect structure, thereby electrically coupling the logic circuit to the image sensors.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: May 18, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Chun-Chieh Chuang, Feng-Chi Hung, Shuang-Ji Tsai, Jeng-Shyan Lin, Shu-Ting Tsai, Wen-I Hsu
  • Patent number: 11004880
    Abstract: In some embodiments, a pixel sensor is provided. The pixel sensor includes a first photodetector arranged in a semiconductor substrate. A second photodetector is arranged in the semiconductor substrate, where a first substantially straight line axis intersects a center point of the first photodetector and a center point of the second photodetector. A floating diffusion node is arranged in the semiconductor substrate at a point that is a substantially equal distance from the first photodetector and the second photodetector. A pick-up well contact region is arranged in the semiconductor substrate, where a second substantially straight line axis that is substantially perpendicular to the first substantially straight line axis intersects a center point of the floating diffusion node and a center point of the pick-up well contact region.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: May 11, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Seiji Takahashi, Chen-Jong Wang, Dun-Nian Yaung, Feng-Chi Hung, Feng-Jia Shiu, Jen-Cheng Liu, Jhy-Jyi Sze, Chun-Wei Chang, Wei-Cheng Hsu, Wei Chuang Wu, Yimin Huang
  • Patent number: 10991752
    Abstract: A method includes bonding a Backside Illumination (BSI) image sensor chip to a device chip, forming a first via in the BSI image sensor chip to connect to a first integrated circuit device in the BSI image sensor chip, forming a second via penetrating through the BSI image sensor chip to connect to a second integrated circuit device in the device chip, and forming a metal pad to connect the first via to the second via.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: April 27, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jeng-Shyan Lin, Feng-Chi Hung, Dun-Nian Yaung, Jen-Cheng Liu, Szu-Ying Chen, Wen-De Wang, Tzu-Hsuan Hsu
  • Patent number: 10978345
    Abstract: A stacked integrated circuit (IC) device and a method are disclosed. The stacked IC device includes a first semiconductor element. The first substrate includes a dielectric block in the first substrate; and a plurality of first conductive features formed in first inter-metal dielectric layers over the first substrate. The stacked IC device also includes a second semiconductor element bonded on the first semiconductor element. The second semiconductor element includes a second substrate and a plurality of second conductive features formed in second inter-metal dielectric layers over the second substrate. The stacked IC device also includes a conductive deep-interconnection-plug coupled between the first conductive features and the second conductive features. The conductive deep-interconnection-plug is isolated by dielectric block, the first inter-metal-dielectric layers and the second inter-metal-dielectric layers.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: April 13, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shu-Ting Tsai, Jeng-Shyan Lin, Dun-Nian Yaung, Jen-Cheng Liu, Feng-Chi Hung, Chih-Hui Huang, Sheng-Chau Chen, Shih Pei Chou, Chia-Chieh Lin
  • Publication number: 20210005649
    Abstract: In some embodiments, a pixel sensor is provided. The pixel sensor includes a first photodetector arranged in a semiconductor substrate. A second photodetector is arranged in the semiconductor substrate, where a first substantially straight line axis intersects a center point of the first photodetector and a center point of the second photodetector. A floating diffusion node is arranged in the semiconductor substrate at a point that is a substantially equal distance from the first photodetector and the second photodetector. A pick-up well contact region is arranged in the semiconductor substrate, where a second substantially straight line axis that is substantially perpendicular to the first substantially straight line axis intersects a center point of the floating diffusion node and a center point of the pick-up well contact region.
    Type: Application
    Filed: September 16, 2020
    Publication date: January 7, 2021
    Inventors: Seiji Takahashi, Chen-Jong Wang, Dun-Nian Yaung, Feng-Chi Hung, Feng-Jia Shiu, Jen-Cheng Liu, Jhy-Jyi Sze, Chun-Wei Chang, Wei-Cheng Hsu, Wei Chuang Wu, Yimin Huang
  • Patent number: 10886320
    Abstract: An image-sensor device includes a substrate including a pixel region and a logic region. A logic transistor is disposed in the logic region and is surrounded by a logic isolation feature. A radiation-sensing region is disposed in the pixel region of the substrate. An epitaxial pixel isolation feature is disposed in the pixel region and surrounds the radiation-sensing region. A doped region with a same doping polarity as the radiation-sensing region is located between a bottom of the radiation-sensing region and the back surface of the substrate. The epitaxial pixel isolation feature is in direct contact with the doped region. The doped region extends continuously under the pixel region and the logic region. The epitaxial pixel isolation feature is in direct contact with the doped region, and the logic isolation feature is spaced apart from the doped region.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: January 5, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-I Hsu, Feng-Chi Hung, Chun-Chieh Chuang, Dun-Nian Yaung, Jen-Cheng Liu
  • Patent number: 10861899
    Abstract: A stacked integrated circuit (IC) device and a method are disclosed. The stacked IC device includes a first semiconductor element and a second semiconductor element bonded on the first semiconductor element. The first semiconductor element includes a first substrate, a common conductive feature in the first substrate, a first inter-level dielectric (ILD) layer, a first interconnection feature and a conductive plug connecting the first interconnection feature to the common conductive feature. The second semiconductor element includes a second substrate, a second ILD layers over the second substrate and a second interconnection feature in second ILD layers. The device also includes a conductive deep plug connecting to the common conductive feature in the first semiconductor element and the second interconnection feature. The conductive deep plug is separated with the conductive plug by the first ILD layer.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: December 8, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Chieh Chuang, Dun-Nian Yaung, Jen-Cheng Liu, Feng-Chi Hung, Tzu-Hsuan Hsu, Shu-Ting Tsai, Min-Feng Kao
  • Patent number: 10861894
    Abstract: The present disclosure relates to a CMOS image sensor having a multiple deep trench isolation (MDTI) structure, and an associated method of formation. In some embodiments, a plurality of photodiodes is formed from a front-side of a substrate. A plurality of boundary deep trench isolation (BDTI) trenches having a first depth and a plurality of multiple deep trench isolation (MDTI) trenches having a second depth are formed from a back-side of the substrate. A stack of dielectric layers is formed in the BDTI trenches and the MDTI trenches. A plurality of color filters is formed overlying the stack of dielectric layers corresponding to the plurality of photodiodes.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: December 8, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei Chuang Wu, Ching-Chun Wang, Dun-Nian Yaung, Feng-Chi Hung, Jen-Cheng Liu, Yen-Ting Chiang, Chun-Yuan Chen, Shen-Hui Hong
  • Publication number: 20200343281
    Abstract: The present disclosure relates to a CMOS image sensor having a multiple deep trench isolation (MDTI) structure, and an associated method of formation. In some embodiments, the image sensor comprises a plurality of pixel regions disposed within a substrate and respectively comprising a photodiode configured to receive radiation that enters the substrate from a back-side. A boundary deep trench isolation (BDTI) structure is disposed at boundary regions of the pixel regions surrounding the photodiode. The BDTI structure extends from the back-side of the substrate to a first depth within the substrate. A multiple deep trench isolation (MDTI) structure is disposed at inner regions of the pixel regions overlying the photodiode. The MDTI structure extends from the back-side of the substrate to a second depth within the substrate smaller than the first depth. The MDTI structure is a continuous integral unit having a ring shape.
    Type: Application
    Filed: July 9, 2020
    Publication date: October 29, 2020
    Inventors: Wei Chuang Wu, Ching-Chun Wang, Dun-Nian Yaung, Feng-Chi Hung, Jen-Cheng Liu, Yen-Ting Chiang, Chun-Yuan Chen, Shen-Hui Hong
  • Publication number: 20200321373
    Abstract: The present disclosure relates to a semiconductor device. The semiconductor device includes a gate structure arranged on a first surface of a substrate. A doped isolation region is arranged within the substrate along opposing sides of the gate structure. The substrate includes a first region between sides of the doped isolation region and a second region having a different doping characteristic than the first region. The second region contacts a bottom of the first region and a bottom of the doped isolation region.
    Type: Application
    Filed: June 23, 2020
    Publication date: October 8, 2020
    Inventors: Szu-Ying Chen, Min-Feng Kao, Jen-Cheng Liu, Feng-Chi Hung, Dun-Nian Yaung
  • Patent number: 10797091
    Abstract: In some embodiments, a pixel sensor is provided. The pixel sensor includes a first photodetector arranged in a semiconductor substrate. A second photodetector is arranged in the semiconductor substrate, where a first substantially straight line axis intersects a center point of the first photodetector and a center point of the second photodetector. A floating diffusion node is arranged in the semiconductor substrate at a point that is a substantially equal distance from the first photodetector and the second photodetector. A pick-up well contact region is arranged in the semiconductor substrate, where a second substantially straight line axis that is substantially perpendicular to the first substantially straight line axis intersects a center point of the floating diffusion node and a center point of the pick-up well contact region.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: October 6, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Seiji Takahashi, Chen-Jong Wang, Dun-Nian Yaung, Feng-Chi Hung, Feng-Jia Shiu, Jen-Cheng Liu, Jhy-Jyi Sze, Chun-Wei Chang, Wei-Cheng Hsu, Wei Chuang Wu, Yimin Huang