Patents by Inventor Fengyuan LI

Fengyuan LI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11929446
    Abstract: Provided is a preparation method of a detector material. The present disclosure epitaxially grows a buffer layer on a surface of a gallium arsenide substrate, deposits a silicon dioxide layer on the buffer layer, and etches the silicon dioxide layer on the buffer layer according to a strip pattern by photolithography and etching to form strip growth regions with continuous changes in width. Finally, a molecular beam epitaxy (MBE) technology is used to epitaxially grow the detector material in the strip growth regions under set epitaxy growth conditions. Because of the same mobility of atoms arriving at the surface of the substrate, numbers of atoms migrating to the strip growth regions are different due to different widths of the strip growth regions, such that compositions of the material change with the widths of the strip growth regions or a layer thickness changes with the widths of the strip growth regions.
    Type: Grant
    Filed: November 8, 2022
    Date of Patent: March 12, 2024
    Assignee: CHANGCHUN UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Qun Hao, Zhipeng Wei, Jilong Tang, Huimin Jia, Lei Liao, Kexue Li, Fengyuan Lin, Rui Chen, Shichen Su, Shuangpeng Wang
  • Patent number: 11499987
    Abstract: A sensor includes a movable element adapted for rotational motion about a rotational axis due to acceleration along an axis perpendicular to a surface of a substrate. The movable element includes first and second ends, a first section having a first length between the rotational axis and the first end, and a second section having a second length between the rotational axis and the second end that is less than the first length. A motion stop extends from the second end of the second section. The first end of the first section includes a geometric stop region for contacting the surface of the substrate at a first distance away from the rotational axis. The motion stop for contacting the surface of the substrate at a second distance away from the rotational axis. The first and second distances facilitate symmetric stop performance between the geometric stop region and the motion stop.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: November 15, 2022
    Assignee: NXP USA, Inc.
    Inventors: Andrew C McNeil, Fengyuan Li
  • Publication number: 20220050124
    Abstract: An inertial sensor includes a movable mass, a torsion element, and a suspension system suspending the movable mass apart from a surface of a substrate. The torsion element is coupled to the movable mass for enabling motion of the movable mass about an axis of rotation in response to a force imposed upon the movable mass in a direction perpendicular to the surface of the substrate. The suspension system includes first and second anchors attached to the substrate and displaced away from the axis of rotation, a beam connected to the movable mass via the torsion element, a first folded spring coupled between the first anchor and a first beam end of the beam, and a second folded spring coupled between the second anchor and a second beam end of the beam.
    Type: Application
    Filed: August 17, 2020
    Publication date: February 17, 2022
    Inventors: Fengyuan Li, Andrew C McNeil
  • Publication number: 20210396781
    Abstract: A sensor includes a movable element adapted for rotational motion about a rotational axis due to acceleration along an axis perpendicular to a surface of a substrate. The movable element includes first and second ends, a first section having a first length between the rotational axis and the first end, and a second section having a second length between the rotational axis and the second end that is less than the first length. A motion stop extends from the second end of the second section. The first end of the first section includes a geometric stop region for contacting the surface of the substrate at a first distance away from the rotational axis. The motion stop for contacting the surface of the substrate at a second distance away from the rotational axis. The first and second distances facilitate symmetric stop performance between the geometric stop region and the motion stop.
    Type: Application
    Filed: June 17, 2020
    Publication date: December 23, 2021
    Inventors: Andrew C. McNeil, Fengyuan Li
  • Patent number: 10827245
    Abstract: In at least one embodiment, a micro-electro-mechanical systems (MEMS) microphone assembly is provided. The assembly comprises an enclosure, a single micro-electro-mechanical systems (MEMS) transducer, a substrate layer, and an application housing. The single MEMS transducer is positioned within the enclosure. The substrate layer supports the single MEMS transducer. The application housing supports the substrate layer and defining at least a portion of a first transmission mechanism to enable a first side of the single MEMS transducer to receive an audio input signal and at least a portion of a second transmission mechanism to enable a second side of the single MEMS transducer to receive the audio input signal.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: November 3, 2020
    Assignee: Harman International Industries, Incorporated
    Inventors: Marc Reese, John Baumhauer, Fengyuan Li, Spiro Iraclianos
  • Patent number: 10771875
    Abstract: In at least one embodiment, a micro-electro-mechanical systems (MEMS) microphone assembly is provided. The assembly includes an enclosure, a MEMS transducer, and a plurality of substrate layers. The single MEMS transducer is positioned within the enclosure. The plurality of substrate layers support the single MEMS transducer. The plurality of substrate layers define a first transmission mechanism to enable a first side of the single MEMS transducer to receive an audio input signal and a second transmission mechanism to enable a second side of the single MEMS transducer to receive the audio input signal.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: September 8, 2020
    Assignee: Harman International Industries, Incorporated
    Inventors: John C. Baumhauer, Jr., Fengyuan Li, Larry A. Marcus, Alan D. Michel, Marc Reese
  • Publication number: 20190110116
    Abstract: In at least one embodiment, a micro-electro-mechanical systems (MEMS) microphone assembly is provided. The assembly includes an enclosure, a MEMS transducer, and a plurality of substrate layers. The single MEMS transducer is positioned within the enclosure. The plurality of substrate layers support the single MEMS transducer. The plurality of substrate layers define a first transmission mechanism to enable a first side of the single MEMS transducer to receive an audio input signal and a second transmission mechanism to enable a second side of the single MEMS transducer to receive the audio input signal.
    Type: Application
    Filed: December 10, 2018
    Publication date: April 11, 2019
    Inventors: John C. BAUMHAUER, JR., Fengyuan LI, Larry A. MARCUS, Alan D. MICHEL, Marc REESE
  • Patent number: 10247753
    Abstract: A microelectromechanical systems (MEMS) device, such as a single axis accelerometer, includes a movable mass suspended from a substrate. The movable mass has a first portion and a second portion. A first spring system interconnects the first portion of the movable mass with the second portion of the movable mass. A second spring system interconnects the first portion with an anchor system. The first spring system enables movement of the second portion of the movable mass in response to a shock event force imposed on the movable mass in a first direction that is orthogonal to a sense direction, wherein the first spring system inhibits movement of the first portion of the movable mass in the first direction in response to the shock event force. However, the first and second movable masses move together in response to an acceleration force in the sense direction.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: April 2, 2019
    Assignee: NXP USA, Inc.
    Inventors: Aaron A. Geisberger, Fengyuan Li
  • Patent number: 10154330
    Abstract: In at least one embodiment, a micro-electro-mechanical systems (MEMS) microphone assembly is provided. The assembly includes an enclosure, a MEMS transducer, and a plurality of substrate layers. The single MEMS transducer is positioned within the enclosure. The plurality of substrate layers support the single MEMS transducer. The plurality of substrate layers define a first transmission mechanism to enable a first side of the single MEMS transducer to receive an audio input signal and a second transmission mechanism to enable a second side of the single MEMS transducer to receive the audio input signal.
    Type: Grant
    Filed: January 3, 2014
    Date of Patent: December 11, 2018
    Assignee: Harman International Industries, Incorporated
    Inventors: John C Baumhauer, Jr., Fengyuan Li, Larry A. Marcus, Alan D. Michel, Marc Reese
  • Publication number: 20180249235
    Abstract: In at least one embodiment, a micro-electro-mechanical systems (MEMS) microphone assembly is provided. The assembly comprises an enclosure, a single micro-electro-mechanical systems (MEMS) transducer, a substrate layer, and an application housing. The single MEMS transducer is positioned within the enclosure. The substrate layer supports the single MEMS transducer. The application housing supports the substrate layer and defining at least a portion of a first transmission mechanism to enable a first side of the single MEMS transducer to receive an audio input signal and at least a portion of a second transmission mechanism to enable a second side of the single MEMS transducer to receive the audio input signal.
    Type: Application
    Filed: April 23, 2018
    Publication date: August 30, 2018
    Inventors: MARC REESE, JOHN BAUMHAUER, FENGYUAN LI, SPIRO IRACLIANOS
  • Publication number: 20180231579
    Abstract: A microelectromechanical systems (MEMS) device, such as a single axis accelerometer, includes a movable mass suspended from a substrate. The movable mass has a first portion and a second portion. A first spring system interconnects the first portion of the movable mass with the second portion of the movable mass. A second spring system interconnects the first portion with an anchor system. The first spring system enables movement of the second portion of the movable mass in response to a shock event force imposed on the movable mass in a first direction that is orthogonal to a sense direction, wherein the first spring system inhibits movement of the first portion of the movable mass in the first direction in response to the shock event force. However, the first and second movable masses move together in response to an acceleration force in the sense direction.
    Type: Application
    Filed: February 14, 2017
    Publication date: August 16, 2018
    Inventors: Aaron A. Geisberger, Fengyuan Li
  • Patent number: 9955246
    Abstract: In at least one embodiment, a micro-electro-mechanical systems (MEMS) microphone assembly is provided. The assembly comprises an enclosure, a single micro-electro-mechanical systems (MEMS) transducer, a substrate layer, and an application housing. The single MEMS transducer is positioned within the enclosure. The substrate layer supports the single MEMS transducer. The application housing supports the substrate layer and defining at least a portion of a first transmission mechanism to enable a first side of the single MEMS transducer to receive an audio input signal and at least a portion of a second transmission mechanism to enable a second side of the single MEMS transducer to receive the audio input signal.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: April 24, 2018
    Assignee: Harman International Industries, Incorporated
    Inventors: Marc Reese, John Baumhauer, Fengyuan Li, Spiro Iraclianos
  • Patent number: 9829406
    Abstract: A differential capacitive output pressure sensor device includes a pressure sensor diaphragm layer comprising a pressure sensing diaphragm portion, a movable electrode on the pressure sensing diaphragm portion, a fixed electrode, and a device layer electrode. The pressure sensor device further includes a device layer including a fixed element connected to the device layer electrode and a movable element connected to the movable electrode. As the pressure changes, the pressure sensing diaphragm portion including the movable electrode and the movable element move. This changes the capacitance between the movable electrode and the fixed element inversely to the change in capacitance between the fixed electrode and the moveable element. Accordingly, a differential capacitive output is provided that has improved linearity with respect to the pressure change and increased sensitivity allowing the change in pressure to be measured readily and accurately.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: November 28, 2017
    Assignee: NXP USA, Inc.
    Inventors: Aaron A Geisberger, Dubravka Bilic, Chad S Dawson, Fengyuan Li
  • Patent number: 9818656
    Abstract: A method of testing includes attaching a first and second die to first and second die sites of a lead frame and forming a plurality of wire bonds coupling a plurality of pins of the first die site to the first die and a plurality of pins of the second die site to the second die. The first and second die are encapsulated. An isolation cut is performed to isolate the plurality of pins of the first die site from the plurality of pins of the second die site, while maintaining electrical connection between the first tie bar of the first die site and the first tie bar of the second die site. The first and second die are tested while providing a first power supply source to the first and second die via the first tie bars. After testing, the dies sites are fully singulated to result in packaged IC device.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: November 14, 2017
    Assignee: NXP USA, Inc.
    Inventors: Mark Edward Schlarmann, Dwight Lee Daniels, Stephen Ryan Hooper, Chad Dawson, Fengyuan Li
  • Patent number: 9790089
    Abstract: A MEMS sensor package comprises a MEMS die that includes a substrate having a sensor formed thereon and a cap layer coupled to the substrate. The cap layer has a cavity overlying a substrate region at which the sensor resides. A port extends between the cavity and a side wall of the MEMS die and enables admittance of fluid into the cavity. Fabrication methodology entails providing a substrate structure having sensors formed thereon, providing a cap layer structure having inwardly extending cavities, and forming a channel between pairs of the cavities. The cap layer structure is coupled with the substrate structure and each channel is interposed between a pair of cavities. A singulation process produces a pair of sensor packages, each having a port formed by splitting the channel, where the port is exposed during singulation and extends between its respective cavity and side wall of the sensor package.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: October 17, 2017
    Assignee: NXP USA, Inc.
    Inventors: Chad S. Dawson, Stephen R. Hooper, Fengyuan Li, Arvind S. Salian
  • Publication number: 20170174509
    Abstract: A MEMS sensor package comprises a MEMS die that includes a substrate having a sensor formed thereon and a cap layer coupled to the substrate. The cap layer has a cavity overlying a substrate region at which the sensor resides. A port extends between the cavity and a side wall of the MEMS die and enables admittance of fluid into the cavity. Fabrication methodology entails providing a substrate structure having sensors formed thereon, providing a cap layer structure having inwardly extending cavities, and forming a channel between pairs of the cavities. The cap layer structure is coupled with the substrate structure and each channel is interposed between a pair of cavities. A singulation process produces a pair of sensor packages, each having a port formed by splitting the channel, where the port is exposed during singulation and extends between its respective cavity and side wall of the sensor package.
    Type: Application
    Filed: March 3, 2017
    Publication date: June 22, 2017
    Inventors: Chad S. Dawson, Stephen R. Hooper, Fengyuan Li, Arvind S. Salian
  • Publication number: 20170115322
    Abstract: A sensor device comprises a device structure and a cap coupled with the device structure to produce a cavity in which components of the sensor device are located. The device structure includes a substrate and a movable element spaced apart from a surface of the substrate. A port extends through the substrate underlying the movable element. A sense element is spaced apart from the movable element and is displaced away from the port. The movable element and the sense element form an inertial sensor to sense a motion stimulus as movement of the movable element relative to the sense element. An additional sense element together with a diaphragm spans across the port. The movable element and the additional sense element form a pressure sensor for sensing a pressure stimulus from an external environment as movement of the additional sense element together with the diaphragm relative to the movable element.
    Type: Application
    Filed: October 22, 2015
    Publication date: April 27, 2017
    Inventors: FENGYUAN LI, Chad S. Dawson, Andrew C. MCNEIL, Arvind S. Salian, Mark E. Schlarmann
  • Publication number: 20170081179
    Abstract: A MEMS sensor package comprises a MEMS die that includes a substrate having a sensor formed thereon and a cap layer coupled to the substrate. The cap layer has a cavity overlying a substrate region at which the sensor resides. A port extends between the cavity and a side wall of the MEMS die and enables admittance of fluid into the cavity. Fabrication methodology entails providing a substrate structure having sensors formed thereon, providing a cap layer structure having inwardly extending cavities, and forming a channel between pairs of the cavities. The cap layer structure is coupled with the substrate structure and each channel is interposed between a pair of cavities. A singulation process produces a pair of sensor packages, each having a port formed by splitting the channel, where the port is exposed during singulation and extends between its respective cavity and side wall of the sensor package.
    Type: Application
    Filed: September 22, 2015
    Publication date: March 23, 2017
    Inventors: CHAD S. DAWSON, STEPHEN R. HOOPER, FENGYUAN LI, ARVIND S. SALIAN
  • Publication number: 20170074738
    Abstract: A differential capacitive output pressure sensor device includes a pressure sensor diaphragm layer comprising a pressure sensing diaphragm portion, a movable electrode on the pressure sensing diaphragm portion, a fixed electrode, and a device layer electrode. The pressure sensor device further includes a device layer including a fixed element connected to the device layer electrode and a movable element connected to the movable electrode. As the pressure changes, the pressure sensing diaphragm portion including the movable electrode and the movable element move. This changes the capacitance between the movable electrode and the fixed element inversely to the change in capacitance between the fixed electrode and the moveable element. Accordingly, a differential capacitive output is provided that has improved linearity with respect to the pressure change and increased sensitivity allowing the change in pressure to be measured readily and accurately.
    Type: Application
    Filed: September 15, 2015
    Publication date: March 16, 2017
    Inventors: Aaron A. GEISBERGER, Dubravka BILIC, Chad S. DAWSON, Fengyuan LI
  • Patent number: 9458008
    Abstract: A microelectromechanical systems (MEMS) die includes a substrate having a first substrate layer, a second substrate layer, and an insulator layer interposed between the first and second substrate layers. A structure is formed in the first substrate layer and includes a platform upon which a MEMS device resides. Fabrication methodology entails forming the MEMS device on a front side of the first substrate layer of the substrate, forming openings extending through the second substrate layer from a back side of the second substrate layer to the insulator layer, and forming a trench in the first substrate layer extending from the front side to the insulator layer. The trench is laterally offset from the openings. The trench surrounds the MEMS device to produce the structure in the first substrate layer on which the MEMS device resides. The insulator layer is removed underlying the structure to suspend the structure.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: October 4, 2016
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Chad S. Dawson, Fengyuan Li, Ruben B. Montez, Colin B. Stevens