Patents by Inventor Ferdinand Kuemmeth

Ferdinand Kuemmeth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230057594
    Abstract: A filter comprising a flexible PCB with one or more signal tracks on one side. A electromagnetically absorbing material covers the signal tracks. An insulating material may be provided between the signal tracks and the electromagnetically absorbing material. The PCB is then folded or rolled to take up less space. The PCB may be first folded and then rolled to have both ends of the signal tracks available at the outer portion of the roll.
    Type: Application
    Filed: January 22, 2021
    Publication date: February 23, 2023
    Inventors: Merlin VON SOOSTEN, Ferdinand KUEMMETH, Anders KUHLE, Martin SKJODT, Jonatan KUTCHINSKY, Peter Ulrik KANN
  • Publication number: 20230046599
    Abstract: A multi-channel filter with a PCB with a first side with signalling tracks and shielding tracks between neighbouring signalling tracks. On the second side, a conductive layer is provided. The signalling tracks are covered by an electromagnetically absorbing material, such as a powder of an electrically conducting material is provided. The filter may have sections with reversed structure where the conductors are on the second side and the layer on the first side, where the conductors on opposite sides are interconnected. The filter may be rolled or folded.
    Type: Application
    Filed: January 22, 2021
    Publication date: February 16, 2023
    Inventors: Merlin VON SOOSTEN, Ferdinand KUEMMETH, Anders KUHLE, Martin SKJODT, Jonatan KUTCHINSKY, Peter Ulrik KANN
  • Patent number: 10903411
    Abstract: The present disclosure relates to semiconductor based Josephson junctions and their applications within the field of quantum computing, in particular a tuneable Josephson junction device has been used to construct a gateable transmon qubit. One embodiment relates to a Josephson junction comprising an elongated hybrid nanostructure comprising superconductor and semiconductor materials and a weak link, wherein the weak link is formed by a semiconductor segment of the elongated hybrid nanostructure wherein the superconductor material has been removed to provide a semiconductor weak link.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: January 26, 2021
    Inventors: Charles M. Marcus, Peter Krogstrup, Thomas Sand Jespersen, Jesper Nygård, Karl Petersson, Thorvald Larsen, Ferdinand Kuemmeth
  • Publication number: 20190273196
    Abstract: The present disclosure relates to semiconductor based Josephson junctions and their applications within the field of quantum computing, in particular a tuneable Josephson junction device has been used to construct a gateable transmon qubit. One embodiment relates to a Josephson junction comprising an elongated hybrid nanostructure comprising superconductor and semiconductor materials and a weak link, wherein the weak link is formed by a semiconductor segment of the elongated hybrid nanostructure wherein the superconductor material has been removed to provide a semiconductor weak link.
    Type: Application
    Filed: January 7, 2019
    Publication date: September 5, 2019
    Inventors: Charles M. Marcus, Peter Krogstrup, Thomas Sand Jespersen, Jesper Nygård, Karl Petersson, Thorvald Larsen, Ferdinand Kuemmeth
  • Patent number: 10177297
    Abstract: The present disclosure relates to semiconductor based Josephson junctions and their applications within the field of quantum computing, in particular a tuneable Josephson junction device has been used to construct a gateable transmon qubit. One embodiment relates to a Josephson junction comprising an elongated hybrid nanostructure comprising superconductor and semiconductor materials and a weak link, wherein the weak link is formed by a semiconductor segment of the elongated hybrid nanostructure wherein the superconductor material has been removed to provide a semiconductor weak link.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: January 8, 2019
    Assignee: University of Copenhagen
    Inventors: Charles M. Marcus, Peter Krogstrup, Thomas Sand Jespersen, Jesper Nygård, Karl Petersson, Thorvald Larsen, Ferdinand Kuemmeth
  • Patent number: 9826622
    Abstract: A device is disclosed to reduce noise and temperature during measurements in cryostats comprising, the device comprising any of, or a combination of, the following PC boards, each conditioning a different frequency range: a RC-PC board having a two-stage RC filter in series with a surface-mounted pi-filter; a RF-PC board having a plurality of surface-mounted pi-filters in series, each configured with different low-frequency cutoff frequencies; and a Sapphire-PC board having a sapphire substrate having high heat conductivity at low temperature with thin metal films routed in a meandering fashion.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: November 21, 2017
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Ferdinand Kuemmeth, Charles M. Marcus
  • Publication number: 20170133576
    Abstract: The present disclosure relates to semiconductor based Josephson junctions and their applications within the field of quantum computing, in particular a tuneable Josephson junction device has been used to construct a gateable transmon qubit. One embodiment relates to a Josephson junction comprising an elongated hybrid nanostructure comprising superconductor and semiconductor materials and a weak link, wherein the weak link is formed by a semiconductor segment of the elongated hybrid nanostructure wherein the superconductor material has been removed to provide a semiconductor weak link.
    Type: Application
    Filed: March 4, 2015
    Publication date: May 11, 2017
    Inventors: Charles M. Marcus, Peter Krogstrup, Thomas Sand Jespersen, Jesper Nygård, Karl Petersson, Thorvald Larsen, Ferdinand Kuemmeth
  • Publication number: 20150060190
    Abstract: A device is disclosed to reduce noise and temperature during measurements in cryostats comprising, the device comprising any of, or a combination of, the following PC boards, each conditioning a different frequency range: a RC-PC board having a two-stage RC filter in series with a surface-mounted pi-filter; a RF-PC board having a plurality of surface-mounted pi-filters in series, each configured with different low-frequency cutoff frequencies; and a Sapphire-PC board having a sapphire substrate having high heat conductivity at low temperature with thin metal films routed in a meandering fashion.
    Type: Application
    Filed: August 27, 2013
    Publication date: March 5, 2015
    Applicant: President and Fellows of Harvard College
    Inventors: Ferdinand Kuemmeth, Charles M. Marcus