Patents by Inventor Ferdinand Schmidt

Ferdinand Schmidt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11377054
    Abstract: Described is an electrical power controlling unit (1) for controlling electrical power delivery received from a direct current power source (2) to an electrical power consuming device (3), the alternating current power consuming device being driven by modulatable multiple phase alternating output current at a first voltage provided by the controlling unit, the controlling unit comprising an electrical current transformer (4), multiple outlet conductors (5) for connecting the transformer to the electrical power consuming device, command input means (6) to receive controlling commands from a controller interface (7), battery power input means (8), direct current power source input means (10) for receiving direct current from the electrical power source, a voltage converter (11), first conducting means (12) connecting the voltage converter to the current transformer, and second conducting means (13) connecting the voltage converter to a converted direct current power outlet (14).
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: July 5, 2022
    Assignee: VETUS B.V.
    Inventors: Frederik Ferdinand Schmidt, Arthur Johannes Maria Wilhelmus Roeling
  • Publication number: 20210394694
    Abstract: Described is an electrical power controlling unit (1) for controlling electrical power delivery received from a direct current power source (2) to an electrical power consuming device (3), the alternating current power consuming device being driven by modulatable multiple phase alternating output current at a first voltage provided by the controlling unit, the controlling unit comprising an electrical current transformer (4), multiple outlet conductors (5) for connecting the transformer to the electrical power consuming device, command input means (6) to receive controlling commands from a controller interface (7), battery power input means (8), direct current power source input means (10) for receiving direct current from the electrical power source, a voltage converter (11), first conducting means (12) connecting the voltage converter to the current transformer, and second conducting means (13) connecting the voltage converter to a converted direct current power outlet (14).
    Type: Application
    Filed: November 6, 2019
    Publication date: December 23, 2021
    Inventors: Frederik Ferdinand SCHMIDT, Arthur Johannes Maria Wilhelmus ROELING
  • Patent number: 9903619
    Abstract: An adsorptive heat transformation arrangement includes at least two adsorbers which are connected to at least one pump, an evaporator, and a condenser, a heat store comprising a plurality of horizontal loading and unloading devices for simultaneously stratifying and/or withdrawing a heat transfer fluid, and two or more supply lines fluidically coupled to one another and fluidically coupled to at least one adsorption module. Each horizontal loading and unloading device can be supplied with heat transfer fluid via at least one of the two or more supply lines.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: February 27, 2018
    Assignee: KARLSRUHER INSTITUT FUER TECHNOLOGIE
    Inventors: Ferdinand Schmidt, Chirag Joshi, Valentin Schwamberger, Hadi Taheri
  • Publication number: 20160084540
    Abstract: An adsorptive heat transformation arrangement includes at least two adsorbers which are connected to at least one pump, an evaporator, and a condenser, a heat store comprising a plurality of horizontal loading and unloading devices for simultaneously stratifying and/or withdrawing a heat transfer fluid, and two or more supply lines fluidically coupled to one another and fluidically coupled to at least one adsorption module. Each horizontal loading and unloading device can be supplied with heat transfer fluid via at least one of the two or more supply lines.
    Type: Application
    Filed: September 17, 2015
    Publication date: March 24, 2016
    Inventors: Ferdinand Schmidt, Chirag Joshi, Valentin Schwamberger, Hadi Taheri
  • Patent number: 8707729
    Abstract: The invention relates to an adsorber element for a heat exchanger and an adsorption heat pump or adsorption refrigerator that contains at least one such adsorber element. The adsorber element includes a heat-conducting solid body and a sorption material for a vaporous adsorbate arranged on the surface of this solid body. A fluid-tight foil composite is arranged on the outer surface of the open-pore solid body, at least in the areas in which a contact with a heat transfer fluid is provided, wherein this adsorber element is embodied such that the heat exchange between the open-pore solid body and the heat transfer fluid can take place via the fluid-tight foil composite.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: April 29, 2014
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventors: Ferdinand Schmidt, Hans-Martin Henning, Gunther Munz, Gerald Rausch, Andrea Berg, Norbert Rodler, Cornelia Stramm
  • Patent number: 8631667
    Abstract: System including an adsorption heat pump with at least one adsorber and at least one heat accumulator and method for operating an adsorption heat pump. The system additionally includes a heat source configured to provide heat for a desorption at a temperature that is at least one of higher than temperature levels achievable through previous adsorption cycles in the at least one heat accumulator and not available in a predetermined quantity in the at least one heat accumulator. The at least one heat accumulator is structured and arranged to simultaneously store heat at different temperature levels therein. Adsorption heat released during an adsorption, which is not to be used for a later desorption, is dissipated to a heat sink. Adsorption heat to be used for the later desorption is stored in the heat accumulator at a temperature dependent on an adsorption temperature. Desorption heat is extractable at least in part from the at least one heat accumulator at a desired temperature.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: January 21, 2014
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventors: Gunther Munz, Ferdinand Schmidt, Tomas Nunez, Lena Schnabel
  • Patent number: 8053032
    Abstract: The invention relates to a method for production of a zeolite layer on a substrate containing metal, comprising the following method steps: production of an aqueous suspension, comprising several components, one component comprises at least one cross-linking element from the third, fourth or fifth main group of the periodic table, the substrate containing metal comprises at least one of the cross-linking elements, introduction of the substrate containing metal to the aqueous suspension, heating the aqueous suspension and the substrate containing the metal present therein for the in-situ crystallisation of a zeolite layer on the substrate containing metal, whereby the cross-linking elements in the substrate containing metal are extracted and included in the zeolite layer, a cross-linking element present in the suspension for formation of the zeolite layer is present at a concentration so low that a crystallisation in the suspension is largely or completely avoided and said element is principally provided by th
    Type: Grant
    Filed: October 29, 2005
    Date of Patent: November 8, 2011
    Assignee: SorTech AG
    Inventors: Wilhelm Schwieger, Selvam Thangaraj, Franziska Scheffler, Ralph Herrmann, Marthala Reddy, Walter Mittelbach, Jürgen Bauer, Ferdinand Schmidt, Hans-Martin Hennig
  • Publication number: 20100058782
    Abstract: The invention relates to an adsorbent having a porous carrier structure, the pore walls of which are coated with a material which displays a temperature-induced reversible switching-over of the surface properties from hydrophilic to hydrophobic behaviour, the hydrophobicity increasing with rising temperature.
    Type: Application
    Filed: August 13, 2007
    Publication date: March 11, 2010
    Inventors: Ivan Brovchenko, Alla Oleinikova, Alfons Geiger, Ferdinand Schmidt
  • Publication number: 20090282846
    Abstract: The invention relates to an arrangement that has an adsorption heat pump with at least one adsorber and at least one heat accumulator with the following features: heat at different temperature levels can be stored in the heat accumulator (2) simultaneously; adsorption heat released during the adsorption, which heat is not to be used for a later desorption, can be dissipated to a heat sink; adsorption heat that is to be used for the desorption can be stored in the heat accumulator at a temperature dependent on the adsorption temperature; desorption heat can be extracted at least in part from the heat accumulator at a desired temperature; a heat source, in particular a thermal solar collector is available, with which heat necessary for the desorption can be provided at a temperature level that is higher than the temperature levels achievable through previous desorption in the heat accumulator (2), and/or heat can be provided which is not available in the required quantity in the heat accumulator.
    Type: Application
    Filed: September 14, 2007
    Publication date: November 19, 2009
    Inventors: Gunther Munz, Ferdinand Schmidt, Tomas Nunez, Lena Schnabel
  • Publication number: 20090217691
    Abstract: The invention relates to an adsorber element for a heat exchanger and an adsorption heat pump or adsorption refrigerator that contains at least one such adsorber element. The adsorber element includes a heat-conducting solid body and a sorption material for a vaporous adsorbate arranged on the surface of this solid body. A fluid-tight foil composite is arranged on the outer surface of the open-pore solid body, at least in the areas in which a contact with a heat transfer fluid is provided, wherein this adsorber element is embodied such that the heat exchange between the open-pore solid body and the heat transfer fluid can take place via the fluid-tight foil composite.
    Type: Application
    Filed: February 26, 2007
    Publication date: September 3, 2009
    Inventors: Ferdinand Schmidt, Hans-Martin Henning, Gunther Munz, Gerald Rausch, Andrea Berg, Norbert Rodler, Cornelia Stramm
  • Publication number: 20090090491
    Abstract: The invention relates to a method for production of a zeolite layer on a substrate containing metal, comprising the following method steps: production of an aqueous suspension, comprising several components, one component comprises at least one cross-linking element from the third, fourth or fifth main group of the periodic table, the substrate containing metal comprises at least one of the cross-linking elements, introduction of the substrate containing metal to the aqueous suspension, heating the aqueous suspension and the substrate containing the metal present therein for the in-situ crystallisation of a zeolite layer on the substrate containing metal, whereby the cross-linking elements in the substrate containing metal are extracted and included in the zeolite layer, a cross-linking element present in the suspension for formation of the zeolite layer is present at a concentration so low that a crystallisation in the suspension is largely or completely avoided and said element is principally provided by th
    Type: Application
    Filed: October 29, 2005
    Publication date: April 9, 2009
    Inventors: Wilhelm Schwieger, Ralph Hermann, Selvam Thangaraj, Marthala Reddy, Franziska Scheffler, Ferdinand Schmidt, Walter Mittelbach, Hans-Martin Hennig, Bauer Jurgen
  • Patent number: 6982011
    Abstract: The invention relates to a method for producing improved cold-rolled band that is capable of being deep-drawn or ironed and that has a carbon content of less than 0.5 weight %. The invention also relates to a cold-rolled band that can be produced by such a method, and preferably used for producing cylindrical containers and, in particular, battery containers by deep-drawing or ironing. The band that is cold-rolled with a cold-rolling ratio ranging from 30 to 95% is subjected to a thermal treatment in an annealing furnace and to a—preferably galvanic—coating of at least one of the two band surfaces.
    Type: Grant
    Filed: August 3, 2000
    Date of Patent: January 3, 2006
    Assignee: Hille & Mueller GmbH
    Inventors: Karlfried Pfeifenbring, Hans-Güenter Steinmann, Ferdinand Schmidt, Werner Olberding, Marcel Sebastian Rubart
  • Patent number: 6923897
    Abstract: The invention relates to a method for producing an electrolytically coated cold rolled strip, preferably for use in the production of battery sheaths. The cold rolled strip is provided with a cobalt or a cobalt alloy layer by an electrolytic method. The aim of the invention is to provide a battery sheath with low values for the electric contact resistance between the cathode substance of the battery and the inner surface of the battery sheath. To this end, organic substances m added to the electrolyte during coating that produce decomposition products, said decomposition produces and/or reaction products of said decomposition products with other components of the electrolytic bath being deposited on the strip material as a brittle layer along with the cobalt or the cobalt alloy.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: August 2, 2005
    Assignee: Hille & Mueller GmbH
    Inventors: Ferdinand Schmidt, Hans-Guenter Steinmann, Karlfried Pfeifenbring, Werner Olberding, Dagmar Petrick
  • Patent number: 6852445
    Abstract: A battery sheath made of formed and cold-rolled sheet metal as well as a process for manufacturing the battery sheath are proposed. In the process, cold-rolled strip stock is provided on at least one side with a coating of Ni, Co, Fe, Sn, In, Pd, Bi or their alloys in an electroplating bath, e.g., a Watts-type bath. As an additional component, the electroplating bath contains electrically conductive particles such as carbon, carbon black, graphite, TiS2, TaS2, MoSi2. These particles are deposited on the base material during electroplating together with Ni, Co, Fe, Sn, In, Pd, Bi or their alloys. The sheet metal side with, for example, the carbon-containing electroplated coating faces preferably inwardly when the sheet is formed into a battery sheath. Batteries with battery sheaths produced in this manner exhibit reduced increase in internal resistance, even with prolonged storage, as compared to known batteries.
    Type: Grant
    Filed: October 20, 1999
    Date of Patent: February 8, 2005
    Assignee: Hille & Mueller GmbH
    Inventors: Ferdinand Schmidt, Anette Schenck, Beate Monscheuer, Helmut Kossler, Nikolaus Ferenczy, Annette Borisch, Werner Olberding
  • Patent number: 6613163
    Abstract: The invention relates to a method for producing band-shaped steel for components which are produced by drawing and ironing. The invention also relates to a steel band which can be drawn or ironed and which has been produced by the inventive method. The hot strip is cold-worked in one or more steps at a ratio of the cold roll of at least 86%. Furthermore, at least one side of the band material is provided with a galvanically produced coating containing Ni, Co, Cu, Fe, Sn, In, Pd, Bi and/or the alloys thereof or with a roll-bonded coating containing Cu and/or brass and/or the alloys thereof. The aim of the invention is to carry out the inventive method with the fewest processing steps possible and with low production costs. The method therefore comprises the steps: etching, cold rolling in one or two steps, annealing the coiled band (coil-annealing), optionally rerolling the band. The hot strip preferably contains boron with a percentile of 0.0013 and 0.
    Type: Grant
    Filed: October 3, 2001
    Date of Patent: September 2, 2003
    Assignee: Hille & Mueller GmbH
    Inventors: Karlfried Pfeifenbring, Andrew E. Munera, Ferdinand Schmidt, Rob Van Der Mije, Jaap Neeft, Uwe Schoelich
  • Patent number: 4910096
    Abstract: A cold-rolled steel strip having an electrodeposited nickel coating exhibiting a great diffusion depth, and a process for producing this strip. In order to develop a cold-rolled strip that can be produced economically, and which has a reduced tendency to stick, good deformability, deep coating diffusion, advantageous corrosion dehavior, and improved electrochemical behavior, and in order to develop a process for producing this strip, the thickness of the nickel coating should carry a coating of cobalt which has been electrodeposited to a thickness of 0.01 to 1.0 [m, and after having been coated, the cold-rolled strip should be subjected to a final heat treatment at a temperature of between 580.degree. and 710.degree. C.
    Type: Grant
    Filed: May 12, 1988
    Date of Patent: March 20, 1990
    Assignee: Hille & Muller
    Inventors: Dieter Junkers, Ferdinand Schmidt, Nikolaus Ferenczy