Patents by Inventor Ferdyan Lesmana

Ferdyan Lesmana has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8515509
    Abstract: The present disclosure relates to an emitter that is suitable for a noninvasive blood constituent sensor. The emitter is configured as a point optical source that comprises a plurality of LEDs that emit a sequence of pulses of optical radiation across a spectrum of wavelengths. In some embodiments, the plurality of sets of optical sources may each comprise at least one top-emitting LED and at least one super luminescent LED. In some embodiments, the emitter comprises optical sources that transmit optical radiation in the infrared or near-infrared wavelengths suitable for detecting glucose. In order to achieve the desired SNR for detecting analytes like glucose, the emitter may be driven using a progression from low power to higher power. In addition, the emitter may have its duty cycle modified to achieve a desired SNR.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: August 20, 2013
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Johannes Bruinsma, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Jeroen Poeze, Ferdyan Lesmana, Massi Joe E. Kiani
  • Patent number: 8437825
    Abstract: A noninvasive physiological sensor for measuring one or more physiological parameters of a medical patient can include a bump interposed between a light source and a photodetector. The bump can be placed in contact with body tissue of a patient and thereby reduce a thickness of the body tissue. As a result, an optical pathlength between the light source and the photodetector can be reduced. In addition, the sensor can include a heat sink that can direct heat away from the light source. Moreover, the sensor can include shielding in the optical path between the light source and the photodetector. The shielding can reduce noise received by the photodetector.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: May 7, 2013
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Cristiano Dalvi, Marcelo Lamego, Sean Merritt, Hung Vo, Johannes Bruinsma, Jeroen Poeze, Ferdyan Lesmana, Greg Olsen, Massi Joe E. Kiani
  • Publication number: 20120253150
    Abstract: The present disclosure relates to a sensor having a set of photodetectors that are arranged at various locations to enable the measurement of blood glucose. The photodetectors are arranged across multiple locations. For example, the detector may comprise multiple photodetector arrays that are arranged to have a sufficient difference in mean path length to allow for noise cancellation and noise reduction. Walls may be used in the detector to separate individual photodetectors and prevent mixing of detected optical radiation between the different locations on the measurement site. A window may also be employed to facilitate the passing of optical radiation at various wavelengths for measuring glucose in the tissue.
    Type: Application
    Filed: June 15, 2012
    Publication date: October 4, 2012
    Applicant: CERCACOR LABORATORIES, INC.
    Inventors: Sean Merritt, Marcelo Lamego, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Jeroen Poeze, Ferdyan Lesmana, Massi Joe E. Kiani
  • Publication number: 20120226117
    Abstract: The present disclosure includes a handheld processing device including medical applications for minimally and noninvasive glucose measurements. In an embodiment, the device creates a patient specific calibration using a measurement protocol of minimally invasive measurements and noninvasive measurements, eventually creating a patient specific noninvasive glucometer. Additionally, embodiments of the present disclosure provide for the processing device to execute medical applications and non-medical applications.
    Type: Application
    Filed: November 30, 2011
    Publication date: September 6, 2012
    Inventors: Marcelo M. Lamego, Massi Joe E. Kiani, Jeroen Poeze, Cristiano Dalvi, Sean Merritt, Hung Vo, Gregory A. Olsen, Ferdyan Lesmana
  • Patent number: 8203704
    Abstract: The present disclosure relates to a sensor having a set of photodetectors that are arranged at various locations to enable the measurement of blood glucose. The photodetectors are arranged across multiple locations. For example, the detector may comprise multiple photodetector arrays that are arranged to have a sufficient difference in mean path length to allow for noise cancellation and noise reduction. Walls may be used in the detector to separate individual photodetectors and prevent mixing of detected optical radiation between the different locations on the measurement site. A window may also be employed to facilitate the passing of optical radiation at various wavelengths for measuring glucose in the tissue.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: June 19, 2012
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Sean Merritt, Marcelo Lamego, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Jeroen Poeze, Ferdyan Lesmana, Massi Joe E. Kiani
  • Publication number: 20110004082
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 6, 2011
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani
  • Publication number: 20100026995
    Abstract: The present disclosure relates to a sensor having a set of photodetectors that are arranged at various locations to enable the measurement of blood glucose. The photodetectors are arranged across multiple locations. For example, the detector may comprise multiple photodetector arrays that are arranged to have a sufficient difference in mean path length to allow for noise cancellation and noise reduction. Walls may be used in the detector to separate individual photodetectors and prevent mixing of detected optical radiation between the different locations on the measurement site. A window may also be employed to facilitate the passing of optical radiation at various wavelengths for measuring glucose in the tissue.
    Type: Application
    Filed: August 3, 2009
    Publication date: February 4, 2010
    Applicant: MASIMO Laboratories, Inc.
    Inventors: Sean Merritt, Marcelo Lamego, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Jeroen Poeze, Ferdyan Lesmana, Massi Joe E. Kiani
  • Publication number: 20100030041
    Abstract: The present disclosure relates to an emitter that is suitable for a noninvasive blood constituent sensor. The emitter is configured as a point optical source that comprises a plurality of LEDs that emit a sequence of pulses of optical radiation across a spectrum of wavelengths. In some embodiments, the plurality of sets of optical sources may each comprise at least one top-emitting LED and at least one super luminescent LED. In some embodiments, the emitter comprises optical sources that transmit optical radiation in the infrared or near-infrared wavelengths suitable for detecting glucose. In order to achieve the desired SNR for detecting analytes like glucose, the emitter may be driven using a progression from low power to higher power. In addition, the emitter may have its duty cycle modified to achieve a desired SNR.
    Type: Application
    Filed: August 3, 2009
    Publication date: February 4, 2010
    Applicant: MASIMO Laboratories, Inc.
    Inventors: Johannes Bruinsma, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Jeroen Poeze, Ferdyan Lesmana, Massi Joe E. Kiani
  • Publication number: 20100030039
    Abstract: The present disclosure relates to an interface for a noninvasive glucose sensor that comprises a front-end adapted to receive an input signals from optical detectors and provide corresponding digital signals. In one embodiment, the front-end comprises switched capacitor circuits that are capable of handling multiple streams signals from the optical detectors. In another embodiment, the front-end comprises transimpedance amplifiers that are capable of handling multiple streams of input signals. In this embodiment, the transimpedance amplifier may be configured based on its own characteristics, such as its impedance, the impedance of the photodiodes to which it is coupled, and the number of photodiodes to which it is coupled.
    Type: Application
    Filed: August 3, 2009
    Publication date: February 4, 2010
    Applicant: MASIMO Laboratories, Inc.
    Inventors: Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Jeroen Poeze, Ferdyan Lesmana, Massi Joe E. Kiani
  • Publication number: 20100030040
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Application
    Filed: August 3, 2009
    Publication date: February 4, 2010
    Applicant: MASIMO Laboratories, Inc.
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani
  • Publication number: 20100010326
    Abstract: A noninvasive physiological sensor for measuring one or more physiological parameters of a medical patient can include a bump interposed between a light source and a photodetector. The bump can be placed in contact with body tissue of a patient and thereby reduce a thickness of the body tissue. As a result, an optical pathlength between the light source and the photodetector can be reduced. In addition, the sensor can include a heat sink that can direct heat away from the light source. Moreover, the sensor can include shielding in the optical path between the light source and the photodetector. The shielding can reduce noise received by the photodetector.
    Type: Application
    Filed: July 2, 2009
    Publication date: January 14, 2010
    Applicant: MASIMO LABORATORIES, INC.
    Inventors: Cristiano Dalvi, Marcelo Lamego, Sean Merritt, Hung Vo, Johannes Bruinsma, Jeroen Poeze, Ferdyan Lesmana, Greg Olsen, Massi Joe E. Kiani
  • Publication number: 20100004518
    Abstract: A noninvasive physiological sensor for measuring one or more physiological parameters of a medical patient can include a bump interposed between a light source and a photodetector. The bump can be placed in contact with body tissue of a patient and thereby reduce a thickness of the body tissue. As a result, an optical pathlength between the light source and the photodetector can be reduced. In addition, the sensor can include a heat sink that can direct heat away from the light source. Moreover, the sensor can include shielding in the optical path between the light source and the photodetector. The shielding can reduce noise received by the photodetector.
    Type: Application
    Filed: July 2, 2009
    Publication date: January 7, 2010
    Applicant: MASIMO LABORATORIES, INC.
    Inventors: Hung Vo, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Johannes Bruinsma, Jeroen Poeze, Ferdyan Lesmana, Greg Olsen, Massi Joe E. Kiani
  • Publication number: 20100004519
    Abstract: A noninvasive physiological sensor for measuring one or more physiological parameters of a medical patient can include a bump interposed between a light source and a photodetector. The bump can be placed in contact with body tissue of a patient and thereby reduce a thickness of the body tissue. As a result, an optical pathlength between the light source and the photodetector can be reduced. In addition, the sensor can include a heat sink that can direct heat away from the light source. Moreover, the sensor can include shielding in the optical path between the light source and the photodetector. The shielding can reduce noise received by the photodetector.
    Type: Application
    Filed: July 2, 2009
    Publication date: January 7, 2010
    Applicant: MASIMO LABORATORIES, INC.
    Inventors: Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Jeroen Poeze, Ferdyan Lesmana, Greg Olsen, Massi Joe E. Kiani
  • Patent number: D606659
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: December 22, 2009
    Assignee: Masimo Laboratories, Inc.
    Inventors: Massi Joe E. Kiani, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Jeroen Poeze, Ferdyan Lesmana, Greg Olsen
  • Patent number: D621516
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: August 10, 2010
    Assignee: Masimo Laboratories, Inc.
    Inventors: Massi Joe E. Kiani, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Jeroen Poeze, Ferdyan Lesmana, Greg Olsen