Patents by Inventor Ferenc Krausz

Ferenc Krausz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240106181
    Abstract: A laser system generates laser pulses having a determined carrier-envelope-offset, CEO. The laser system includes a Cr-doped II-VI based laser oscillator system having a resonator cavity, which emits laser pulses having a peak power of at least 0.75 MW. The laser system further includes a nonlinear optical element for spectrally broadening at least a part of the emitted laser pulses irradiated onto the nonlinear optical element to provide the laser pulses with octave-spanning spectral components, and a frequency-doubling element for generating second harmonic spectral components of at least a part of the octave-spanning spectral components. In addition, the laser system includes an f-2f-interferometry device for generating a beating signal of at least a part of the overlapping spectral components exiting the frequency-doubling element and interfering with each other at the f-2f-interferomtry device and for determining and/or controlling the CEO of the emitted laser pulses based on the beating signal.
    Type: Application
    Filed: December 4, 2023
    Publication date: March 28, 2024
    Inventors: Ka Fai Mak, Ferenc Krausz, Philipp Steinleitner, Nathalie Lenke, Maciej Kowalczyk, Alexander Weigel
  • Publication number: 20240106184
    Abstract: A laser oscillator system includes a resonator cavity for confining an intra-cavity laser beam. The laser oscillator system further includes a Cr-doped II-VI gain medium arranged within the resonator cavity and an imaging unit forming part of the resonator cavity. The imaging unit is configured to decouple a spot size of the intra-cavity laser beam at the gain medium from an intra-cavity length of the resonator cavity. Moreover, the resonator cavity and the imaging unit are configured such that the laser oscillator system emits laser pulses at a repetition rate of 50 MHz or less. Further, a laser system and methods for generating light pulses having spectral components at a wavelength of at least 2 ?m are disclosed.
    Type: Application
    Filed: December 4, 2023
    Publication date: March 28, 2024
    Inventors: Ka Fai Mak, Ferenc Krausz, Philipp Steinleitner, Nathalie Lenke
  • Publication number: 20240039235
    Abstract: A laser pulse sequence measuring method for measuring a delay between a pair of pulses from two laser pulse sequences (1, 2), comprises the steps of creating a first laser pulse sequence (1) of first laser pulses (1A) and a second laser pulse sequence (2) of second laser pulses (2A), and generating a delay signal (3) which represents the delay between the pair of pulses from the first and second laser pulse sequences (1, 2), wherein the step of generating the delay signal (3) includes creating intra-pulse difference frequency generation (IPDFG) pulses (4) by applying intra-pulse difference frequency generation to the first laser pulses (1A) in a difference frequency generation (DFG) medium (21), providing phase-stable reference waveforms (5) based on the IPDFG pulses (4), and electro-optic sampling (EOS) of the electric field of the phase-stable reference waveforms (5) with sampling pulses (6) in an EOS medium (22), wherein the sampling pulses (6) are created based on the second laser pulses (2A), for generat
    Type: Application
    Filed: December 22, 2020
    Publication date: February 1, 2024
    Inventors: Alexander WEIGEL, Theresa BUBERL, Ferenc KRAUSZ, Ioachim PUPEZA
  • Patent number: 11552442
    Abstract: A laser device (100), being configured for generating laser pulses by Ken lens based mode locking, comprises a laser resonator (10) with a plurality of resonator mirrors (11.1, 11.2, 11.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: January 10, 2023
    Assignees: MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V., LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
    Inventors: Oleg Pronin, Ferenc Krausz, Sebastian Groebmeyer, Jonathan Brons
  • Patent number: 11530976
    Abstract: A particle analysis method and apparatus, including a spectrometry-based analysis of a fluid sample (1), comprises the steps of creating a sample light beam S and a probe light beam P with a light source device (10) and periodically varying a relative phase between the sample and probe light beams S, P with a phase modulator device (20), irradiating the fluid sample (1) with the sample light beam S, detecting the sample and probe light beams S, P with a detector device (40), and providing a spectral response of the at least one particle (3), wherein the light source device (10) comprises at least one broadband source, which has an emission spectrum covering a mid-infrared MIR frequency range, and the phase modulator device (20) varies the relative phase with a scanning period equal to or below the irradiation period of irradiating the at least one particle (3, 4).
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: December 20, 2022
    Assignees: Max-Planck-Fesellschaft zur Foerderung der Wissenschaften e.V., Ludwig-Maximilians-Universitaet Muenchen
    Inventors: Ferenc Krausz, Ioachim Pupeza, Mihaela Zigman Kohlmaier, Marinus Huber
  • Patent number: 11408724
    Abstract: An interferometer apparatus includes a beam splitter arranged for splitting an input beam into a first beam propagating along a first interferometer arm including a deflection mirror and a second beam propagating along a second interferometer arm including a deflection mirror. The first and second interferometer arms have an identical optical path length. A beam combiner is arranged for recombining the first and second beams into a constructive output and a destructive output. In the first interferometer arm compared with the second interferometer arm, one additional Fresnel reflection at an optically dense medium is provided and a propagation of the electromagnetic fields of the first and second beams, when recombined by the beam combiner, results in a wavelength-independent phase difference of ? between the contributions of the two interferometer arms to the destructive output. Furthermore, an interferometric measurement apparatus and an interferometric measurement method are described.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: August 9, 2022
    Assignee: MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.
    Inventors: Ioachim Pupeza, Ferenc Krausz, Theresa Buberl
  • Publication number: 20220209490
    Abstract: A multiple frequency comb source apparatus (100) for simultaneously creating a first laser pulse sequence representing a first frequency comb (1) and at least one further laser pulse sequence representing at least one further frequency comb (2), wherein at least two of the first and at least one further pulse sequences have different repetition frequencies, comprises a laser resonator device (10) comprising multiple resonator mirrors including first end mirrors EM1,OC1 providing a first laser resonator (11), a laser gain medium (21, 22) being arranged in the laser resonator device (10), and a pump device (30) being arranged for pumping the laser gain medium (21), wherein the laser resonator device (10) is configured for creating the first and at least one further laser pulse sequences by pumping and passively mode-locking the laser gain medium (21), the resonator minors of the laser resonator device (10) include further end minors EM2, OC2 providing at least one further laser resonator (12), the first laser r
    Type: Application
    Filed: March 25, 2019
    Publication date: June 30, 2022
    Inventors: Oleg PRONIN, Ferenc KRAUSZ, Ka Fai MAK, Jonathan BRONS, Maksim IANDULSKII
  • Patent number: 11199496
    Abstract: A method of measuring a polarization response of a sample (1), in particular a biological sample, comprises the steps of generating a sequence of excitation waves (2), irradiating the sample (1) with the sequence of excitation waves (2), including an interaction of the excitation waves (2) with the sample (1), so that a sequence of sample waves (3) is generated each including a superposition of a sample main pulse and a sample global molecular fingerprint (GMF) wave (EGMF(sample)(t)), irradiating a reference sample (1A) with the sequence of excitation waves (2), including an interaction of the excitation waves (2) with the reference sample (1A), so that a sequence of reference waves (3A) is generated each including a superposition of a reference main pulse and a reference GMF wave (EGMF(ref)(t)), optically separating a difference of the sample waves (3) and reference waves (3A) from GMF wave contributions which are common to both of the sample waves (3) and reference waves (3A) in space and/or time, and detec
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: December 14, 2021
    Assignees: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V., Ludwig-Maximilians-Universitaet Muenchen
    Inventors: Ferenc Krausz, Hanieh Fattahi, Marinus Huber, Joachim Pupeza, Mihaela Zigman Kohlmaier
  • Publication number: 20210270596
    Abstract: An interferometer apparatus for an achromatic interferometric superposition of electromagnetic fields, with a dual beam path interferometer, comprises a beam splitter being arranged for splitting an input beam into a first beam propagating along a first interferometer arm (A1) including at least one deflection mirror and a second beam propagating along a second interferometer arm (A2) including at least one deflection mirror, wherein the first and second interferometer arms have an identical optical path length, and a beam combiner being arranged for recombining the first and second beams into a constructive output and a destructive output, wherein reflective surfaces of the beam splitter and the beam combiner are arranged such that, in the first interferometer arm compared with the second interferometer arm, one additional Fresnel reflection at an optically dense medium is provided and a propagation of the electromagnetic fields of the first and second beams, when recombined by the beam combiner, results in
    Type: Application
    Filed: July 16, 2018
    Publication date: September 2, 2021
    Inventors: Ioachim PUPEZA, Ferenc KRAUSZ, Theresa BUBERL
  • Publication number: 20210270719
    Abstract: A particle analysis method and apparatus, including a spectrometry-based analysis of a fluid sample (1), comprises the steps of creating a sample light beam S and a probe light beam P with a light source device (10) and periodically varying a relative phase between the sample and probe light beams S, P with a phase modulator device (20), irradiating the fluid sample (1) with the sample light beam S, detecting the sample and probe light beams S, P with a detector device (40), and providing a spectral response of the at least one particle (3), wherein the light source device (10) comprises at least one broadband source, which has an emission spectrum covering a mid-infrared MIR frequency range, and the phase modulator device (20) varies the relative phase with a scanning period equal to or below the irradiation period of irradiating the at least one particle (3, 4).
    Type: Application
    Filed: September 14, 2018
    Publication date: September 2, 2021
    Inventors: Ferenc KRAUSZ, Ioachim PUPEZA, Mihaela ZIGMAN KOHLMAIER, Marinus HUBER
  • Publication number: 20210050701
    Abstract: A laser device (100), being configured for generating laser pulses by Ken lens based mode locking, comprises a laser resonator (10) with a plurality of resonator mirrors (11.1, 11.2, 11.
    Type: Application
    Filed: January 23, 2019
    Publication date: February 18, 2021
    Inventors: Oleg PRONIN, Ferenc KRAUSZ, Sebastian GROEBMEYER, Jonathan BRONS
  • Patent number: 10855049
    Abstract: A pulse laser apparatus (100) for creating laser pulses (1), in particular soliton laser pulses (1), based on Kerr lens mode locking of a circulating light field in an oscillator cavity (10), comprises at least two resonator mirrors (11, 12, . . .
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: December 1, 2020
    Assignees: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V., Ludwig-Maximilians-Universitaet Muenchen
    Inventors: Oleg Pronin, Ferenc Krausz, Jonathan Brons
  • Publication number: 20200091672
    Abstract: A pulse laser apparatus (100) for creating laser pulses (1), in particular soliton laser pulses (1), based on Kerr lens mode locking of a circulating light field in an oscillator cavity (10), comprises at least two resonator mirrors (11, 12, . . .
    Type: Application
    Filed: February 23, 2017
    Publication date: March 19, 2020
    Inventors: Oleg PRONIN, Ferenc KRAUSZ, Jonathan BRONS
  • Publication number: 20200033259
    Abstract: A method of measuring a polarization response of a sample (1), in particular a biological sample, comprises the steps of generating a sequence of excitation waves (2), irradiating the sample (1) with the sequence of excitation waves (2), including an interaction of the excitation waves (2) with the sample (1), so that a sequence of sample waves (3) is generated each including a superposition of a sample main pulse and a sample global molecular fmgerprint (GMF) wave (EGMF(sample)(t)), irradiating a reference sample (1A) with the sequence of excitation waves (2), including an interaction of the excitation waves (2) with the reference sample (1A), so that a sequence of reference waves (3A) is generated each including a superposition of a reference main pulse and a reference GMF wave (EGMF(ref)(t)), optically separating a difference of the sample waves (3) and reference waves (3A) from GMF wave contributions which are common to both of the sample waves (3) and reference waves (3A) in space and/or time, and detect
    Type: Application
    Filed: March 21, 2017
    Publication date: January 30, 2020
    Inventors: Ferenc KRAUSZ, Hanieh FATTAHI, Marinus HUBER, Ioachim PUPEZA, Mihaela ZIGMAN KOHLMAIER
  • Patent number: 10522962
    Abstract: A pulse light source device (100) for creating fs output laser pulses (1, 1.1, 1.2, 1.3) having CEP stability comprises a pulse source device (10) creating primary ps laser pulses, a first beam splitting device (13) splitting the primary ps laser pulses to first ps laser pulses (2.1) and second ps laser pulses (2.2), a pulse shortening device (20) creating sub-ps laser pulses (3) by shortening and spectrally broadening the first ps laser pulses (2.1), a primary supercontinuum generation device (30) creating primary fs laser pulses (4), a pulse stretcher device (40) creating stretched ps laser pulses (5, 5.1) by stretching the primary fs laser pulses (4), a optical parametric chirped-pulse amplification device (51) creating amplified ps laser pulses (6, 6.1) on the basis of the stretched ps laser pulses (5, 5.1) and the second ps laser pulses (2.2); a phase stabilization device (61) creating CEP stable ps laser pulses (7, 7.1) by difference frequency generation of the amplified ps laser pulses (6, 6.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: December 31, 2019
    Assignees: MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E. V., LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
    Inventors: Ferenc Krausz, Hanieh Fattahi
  • Publication number: 20190267767
    Abstract: A pulse light source device (100) for creating fs output laser pulses (1, 1.1, 1.2, 1.3) having CEP stability comprises a pulse source device (10) creating primary ps laser pulses, a first beam splitting device (13) splitting the primary ps laser pulses to first ps laser pulses (2.1) and second ps laser pulses (2.2), a pulse shortening device (20) creating sub-ps laser pulses (3) by shortening and spectrally broadening the first ps laser pulses (2.1), a primary supercontinuum generation device (30) creating primary fs laser pulses (4), a pulse stretcher device (40) creating stretched ps laser pulses (5, 5.1) by stretching the primary fs laser pulses (4), a optical parametric chirped-pulse amplification device (51) creating amplified ps laser pulses (6, 6.1) on the basis of the stretched ps laser pulses (5, 5.1) and the second ps laser pulses (2.2); a phase stabilization device (61) creating CEP stable ps laser pulses (7, 7.1) by difference frequency generation of the amplified ps laser pulses (6, 6.
    Type: Application
    Filed: June 10, 2016
    Publication date: August 29, 2019
    Inventors: Ferenc KRAUSZ, Hanieh FATTAHI
  • Patent number: 10101268
    Abstract: A method of measuring a spectral response of a biological sample (1), comprises the steps generation of probe light having a primary spectrum, irradiation of the sample (1) with the probe light, including an interaction of the probe light and the sample (1), and spectrally resolved detection of the probe light having a modified spectrum, which deviates from the primary spectrum as a result of the interaction of the probe light and the sample (1), said modified spectrum being characteristic of the spectral response of the sample (1), wherein the probe light comprises probe light pulses (2) being generated with a fs laser source device (10). Furthermore, a spectroscopic measuring apparatus is described, which is configured for measuring a spectral response of a biological sample (1).
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: October 16, 2018
    Assignees: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V., Ludwig-Maximilians-Universitaet Muenchen
    Inventors: Alexander Apolonskiy, Ioachim Pupeza, Ferenc Krausz, Ernst Fill
  • Patent number: 10042231
    Abstract: A method of creating difference frequency (DF) laser pulses (1) by difference frequency generation (DFG) comprises the steps of providing ultrashort laser pulses (2) having a spectral bandwidth corresponding to a Fourier limit of below 50 fs and containing first spectral components and second spectral components having larger frequencies than the first spectral components, and driving a DFG process by the ultrashort laser pulses (2) in an optically non-linear crystal (10), wherein the DF laser pulses (1) are generated in the crystal (10) by difference frequencies between the first and second spectral components, resp.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: August 7, 2018
    Assignee: MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.
    Inventors: Alexander Apolonskiy, Ernst Fill, Ioachim Pupeza, Ferenc Krausz
  • Patent number: 10033149
    Abstract: An opto-electronic device (100) for processing optical and electric pulses includes a photoconductor device (10) with a sensor section (11) which is made of a band gap material and which has electrical sensor contacts (12, 13), and a signal processing device (20) which is connected with the sensor contacts (12, 13), wherein the photoconductor device (10) is adapted to create a photocurrent between the sensor contacts (12, 13) in response to an irradiation with ultra-short driving laser pulses (1) having a photon energy smaller than the energy band gap of the band gap material, having a non-zero electric field component (3) oriented parallel with a line (4) between the electrical sensor contacts (12, 13), and causing a charge carrier displacement in the band gap material, and wherein the signal processing device (20) is configured for an output of an electric signal being characteristic for at least one of carrier-envelope phase (CE phase), intensity, temporal properties, spectral intensity and spectral phase
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: July 24, 2018
    Assignee: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Agustin Schiffrin, Ralph Ernstorfer, Ferenc Krausz, Tim Paasch-Colberg
  • Publication number: 20180003623
    Abstract: A method of measuring a spectral response of a biological sample (1), comprises the steps generation of probe light having a primary spectrum, irradiation of the sample (1) with the probe light, including an interaction of the probe light and the sample (1), and spectrally resolved detection of the probe light having a modified spectrum, which deviates from the primary spectrum as a result of the interaction of the probe light and the sample (1), said modified spectrum being characteristic of the spectral response of the sample (1), wherein the probe light comprises probe light pulses (2) being generated with a fs laser source device (10). Furthermore, a spectroscopic measuring apparatus is described, which is configured for measuring a spectral response of a biological sample (1).
    Type: Application
    Filed: December 18, 2015
    Publication date: January 4, 2018
    Inventors: Alexander APOLONSKIY, Ioachim PUPEZA, Ferenc KRAUSZ, Ernst FILL