Patents by Inventor Fernando Gonzales

Fernando Gonzales has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6809395
    Abstract: A semiconductor structure pad oxide layer is enlarged by local oxidation of silicon to form a field oxide. An etchback causes the thinnest portions of the field oxide to recede such that a portion of the semiconductor substrate is exposed. An etch through the exposed portion of the semiconductor substrate forms a microtrench between the field oxide and the nitride layer with a lateral dimension that is less than that currently achievable by conventional photolithography. The microtrench is then filled by oxide or nitride growth or by deposition of a dielectric material. In another embodiment, formation of the microtrench is carried out as set forth above, but the nitride layer is removed immediately following trench formation. Alternatively, the pad oxide layer is stripped and a new oxide layer is regrown that substantially covers all exposed surfaces of active areas of the semiconductor substrate.
    Type: Grant
    Filed: August 6, 1999
    Date of Patent: October 26, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Fernando Gonzales, Mike Violette, Nanseng Jeng, Aftab Ahmad, Klaus Schuegraf
  • Publication number: 20020074622
    Abstract: A passivation method includes disassociating ammonia so as to expose at least interfaces between silicon-containing and passivation structures to at least hydrogen species derived from the ammonia and forming an encapsulant layer that is positioned so as to substantially contain the hydrogen species in the presence of the interfaces. The hydrogen passivation reduces a concentration of dangling silicon bonds at the interfaces by as much as about two orders of magnitude or greater. The encapsulant layer, which may include silicon nitride, prevents hydrogen species from escaping therethrough as high temperature processes are subsequently conducted. Once high temperature processes have been completed, portions of the encapsulant layer may be removed, as needed, to provide access to features of the semiconductor device structure that underlie the encapsulant layer. Semiconductor device structures that have been passivated in such a manner are also disclosed.
    Type: Application
    Filed: October 30, 2001
    Publication date: June 20, 2002
    Inventors: Ronald A. Weimer, Fernando Gonzales
  • Patent number: 6090685
    Abstract: A semiconductor structure pad oxide layer is enlarged by local oxidation of silicon to form a field oxide. An etchback causes the thinnest portions of the field oxide to recede such that a portion of the semiconductor substrate is exposed. An etch through the exposed portion of the semiconductor substrate forms a microtrench between the field oxide and the nitride layer with a lateral dimension that is less than that currently achievable by conventional photolithography. The microtrench is then filled by oxide or nitride growth or by deposition of a dielectric material. In another embodiment, formation of the microtrench is carried out as set forth above, but the nitride layer is removed immediately following trench formation. Alternatively, the pad oxide layer is stripped and a new oxide layer is regrown that substantially covers all exposed surfaces of active areas of the semiconductor substrate.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: July 18, 2000
    Assignee: Micron Technology Inc.
    Inventors: Fernando Gonzales, Mike Violette, Nanseng Jeng, Aftab Ahmad, Klaus Schuegraf
  • Patent number: 5497017
    Abstract: This invention is a DRAM array having stacked-capacitor cells of potentially 4F.sup.2 surface area (F being the photolithographic minimum feature width), and a 5-mask process for fabricating such an array. The array has a cross-point cell layout (i.e., a memory cell is located at each intersection of each digit line and each word line) and tungsten digit lines formed using a damascene process buried in the substrate. Each cell in the array has a vertical transistor, with the source/drain regions and channel region of the transistor being formed from epitaxially grown single crystal silicon. The stacked capacitor is fabricated on top of the vertical transistor.
    Type: Grant
    Filed: January 26, 1995
    Date of Patent: March 5, 1996
    Assignee: Micron Technology, Inc.
    Inventor: Fernando Gonzales