Patents by Inventor Fernando Luis De Souza Lopes

Fernando Luis De Souza Lopes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10681805
    Abstract: Some aspects of this disclosure generally are related to improving the robustness of a flexible circuit structure, for example, by providing fault-tolerant electrical pathways for flow of electric current through the flexible circuit structure. In some embodiments, such fault tolerance is enhanced by way of a conductive mesh provided between an adjacent pair of resistive elements. Some aspects are related to improved voltage, current, or voltage and current measurement associated with various pairs of adjacent resistive elements at least when the various pairs have differing distances between them.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: June 9, 2020
    Assignee: KARDIUM INC.
    Inventors: Daniel Robert Weinkam, Shane Fredrick Miller-Tait, Fernando Luis de Souza Lopes
  • Publication number: 20200137875
    Abstract: Some aspects of this disclosure generally are related to improving the robustness of a flexible circuit structure, for example, by providing fault-tolerant electrical pathways for flow of electric current through the flexible circuit structure. In some embodiments, such fault tolerance is enhanced by way of a conductive mesh provided between an adjacent pair of resistive elements. Some aspects are related to improved voltage, current, or voltage and current measurement associated with various pairs of adjacent resistive elements at least when the various pairs have differing distances between them.
    Type: Application
    Filed: December 30, 2019
    Publication date: April 30, 2020
    Inventors: Daniel Robert Weinkam, Shane Fredrick Miller-Tait, Fernando Luis de Souza Lopes
  • Publication number: 20200054394
    Abstract: A device positionable in a cavity of a bodily organ (e.g., a heart) may discriminate between fluid (e.g., blood) and non-fluid tissue (e.g., wall of heart) to provide information or a mapping indicative of a position and/or orientation of the device in the cavity. Discrimination may be based on flow, or some other characteristic, for example electrical permittivity or force. The device may selectively ablate portions of the non-fluid tissue based on the information or mapping. The device may detect characteristics (e.g., electrical potentials) indicative of whether ablation was successful. The device may include a plurality of transducers, intravascularly guided in an unexpanded configuration and positioned proximate the non-fluid tissue in an expanded configuration. Expansion mechanism may include helical member(s) or inflatable member(s).
    Type: Application
    Filed: October 24, 2019
    Publication date: February 20, 2020
    Inventors: Daniel Gelbart, Douglas Wayne Goertzen, Fernando Luis de Souza Lopes
  • Publication number: 20200046426
    Abstract: A device positionable in a cavity of a bodily organ (e.g., a heart) may discriminate between fluid (e.g., blood) and non-fluid tissue (e.g., wall of heart) to provide information or a mapping indicative of a position and/or orientation of the device in the cavity. Discrimination may be based on flow, or some other characteristic, for example electrical permittivity or force. The device may selectively ablate portions of the non-fluid tissue based on the information or mapping. The device may detect characteristics (e.g., electrical potentials) indicative of whether ablation was successful. The device may include a plurality of transducers, intravascularly guided in an unexpanded configuration and positioned proximate the non-fluid tissue in an expanded configuration. Expansion mechanism may include helical member(s) or inflatable member(s).
    Type: Application
    Filed: October 21, 2019
    Publication date: February 13, 2020
    Inventors: Daniel GELBART, Douglas Wayne GOERTZEN, Fernando Luis de Souza LOPES
  • Publication number: 20200046425
    Abstract: A medical device system is disclosed including a high-density arrangement of transducers, which may be configured to ablate, stimulate, or sense characteristics of tissue inside a bodily cavity, such as an intra-cardiac cavity. High-density arrangements of transducers may be achieved, at least in part, by overlapping elongate members on which the transducers are located, and varying sizes, shapes, or both of the transducers, especially in view of the overlapping of the elongate members. Also, the high-density arrangements of transducers may be achieved, at least in part, by including one or more recessed portions in an elongate member in order to expose one or more transducers on an underlying elongate member in a region adjacent an elongate-member-overlap region.
    Type: Application
    Filed: October 17, 2019
    Publication date: February 13, 2020
    Inventors: Fernando Luis de Souza LOPES, Saar MOISA, Peter Josiah HAWES
  • Patent number: 10542620
    Abstract: Some aspects of this disclosure generally are related to improving the robustness of a flexible circuit structure, for example, by providing fault-tolerant electrical pathways for flow of electric current through the flexible circuit structure. In some embodiments, such fault tolerance is enhanced by way of a conductive mesh provided between an adjacent pair of resistive elements. Some aspects are related to improved voltage, current, or voltage and current measurement associated with various pairs of adjacent resistive elements at least when the various pairs have differing distances between them.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: January 21, 2020
    Assignee: KARDIUM, INC.
    Inventors: Daniel Robert Weinkam, Shane Fredrick Miller-Tait, Fernando Luis de Souza Lopes
  • Publication number: 20200015890
    Abstract: A medical device system may include transducers and a structure on which the transducers are located. The structure may include at least a first portion of each elongate member of a plurality of elongate members. Each respective set of a plurality of sets of one or more of the transducers may be located on a respective one of the plurality of elongate members. The structure may be selectively moveable between a delivery configuration in which the structure is sized to be percutaneously deliverable to a bodily cavity and a deployed configuration in which the structure is sized too large to be percutaneously deliverable to the bodily cavity. The second portion of each elongate member of the plurality of elongate members may be arranged in a helical configuration or a twisted, non-helical configuration including at least 360 degrees of rotation when the structure is in the delivery configuration.
    Type: Application
    Filed: September 24, 2019
    Publication date: January 16, 2020
    Inventors: Derrick Kevin TO, Fernando Luis de Souza LOPES, Saar MOISA, Ashkan SARDARI, John Andrew FUNK, Peter Josiah HAWES, Calvin Dane CUMMINGS
  • Patent number: 10499986
    Abstract: A device positionable in a cavity of a bodily organ (e.g., a heart) may discriminate between fluid (e.g., blood) and non-fluid tissue (e.g., wall of heart) to provide information or a mapping indicative of a position and/or orientation of the device in the cavity. Discrimination may be based on flow, or some other characteristic, for example electrical permittivity or force. The device may selectively ablate portions of the non-fluid tissue based on the information or mapping. The device may detect characteristics (e.g., electrical potentials) indicative of whether ablation was successful. The device may include a plurality of transducers, intravascularly guided in an unexpanded configuration and positioned proximate the non-fluid tissue in an expanded configuration. Expansion mechanism may include helical member(s) or inflatable member(s).
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: December 10, 2019
    Assignee: KARDIUM INC.
    Inventors: Daniel Gelbart, Douglas Wayne Goertzen, Fernando Luis de Souza Lopes
  • Publication number: 20190328452
    Abstract: A device positionable in a cavity of a bodily organ (e.g., a heart) may discriminate between fluid (e.g., blood) and non-fluid tissue (e.g., wall of heart) to provide information or a mapping indicative of a position and/or orientation of the device in the cavity. Discrimination may be based on flow, or some other characteristic, for example electrical permittivity or force. The device may selectively ablate portions of the non-fluid tissue based on the information or mapping. The device may detect characteristics (e.g., electrical potentials) indicative of whether ablation was successful. The device may include a plurality of transducers, intravascularly guided in an unexpanded configuration and positioned proximate the non-fluid tissue in an expanded configuration. Expansion mechanism may include helical member(s) or inflatable member(s).
    Type: Application
    Filed: May 9, 2019
    Publication date: October 31, 2019
    Inventors: Daniel GELBART, Douglas Wayne GOERTZEN, Fernando Luis de Souza LOPES
  • Publication number: 20190306968
    Abstract: Some aspects of this disclosure generally are related to improving the robustness of a flexible circuit structure, for example, by providing fault-tolerant electrical pathways for flow of electric current through the flexible circuit structure. In some embodiments, such fault tolerance is enhanced by way of a conductive mesh provided between an adjacent pair of resistive elements. Some aspects are related to improved voltage, current, or voltage and current measurement associated with various pairs of adjacent resistive elements at least when the various pairs have differing distances between them.
    Type: Application
    Filed: June 19, 2019
    Publication date: October 3, 2019
    Inventors: Daniel Robert Weinkam, Shane Fredrick Miller-Tait, Fernando Luis de Souza Lopes
  • Patent number: 10375827
    Abstract: Some aspects of this disclosure generally are related to improving the robustness of a flexible circuit structure, for example, by providing fault-tolerant electrical pathways for flow of electric current through the flexible circuit structure. In some embodiments, such fault tolerance is enhanced by way of a conductive mesh provided between an adjacent pair of resistive elements. Some aspects are related to improved voltage, current, or voltage and current measurement associated with various pairs of adjacent resistive elements at least when the various pairs have differing distances between them.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: August 6, 2019
    Assignee: KARDIUM INC.
    Inventors: Daniel Robert Weinkam, Shane Fredrick Miller-Tait, Fernando Luis de Souza Lopes
  • Publication number: 20190174621
    Abstract: Some aspects of this disclosure generally are related to improving the robustness of a flexible circuit structure, for example, by providing fault-tolerant electrical pathways for flow of electric current through the flexible circuit structure. In some embodiments, such fault tolerance is enhanced by way of a conductive mesh provided between an adjacent pair of resistive elements. Some aspects are related to improved voltage, current, or voltage and current measurement associated with various pairs of adjacent resistive elements at least when the various pairs have differing distances between them.
    Type: Application
    Filed: January 29, 2019
    Publication date: June 6, 2019
    Inventors: Daniel Robert Weinkam, Shane Fredrick Miller-Tait, Fernando Luis de Souza Lopes
  • Patent number: 10231328
    Abstract: Some aspects of this disclosure generally are related to improving the robustness of a flexible circuit structure, for example, by providing fault-tolerant electrical pathways for flow of electric current through the flexible circuit structure. In some embodiments, such fault tolerance is enhanced by way of a conductive mesh provided between an adjacent pair of resistive elements. Some aspects are related to improved voltage, current, or voltage and current measurement associated with various pairs of adjacent resistive elements at least when the various pairs have differing distances between them.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: March 12, 2019
    Assignee: KARDIUM INC.
    Inventors: Daniel Robert Weinkam, Shane Fredrick Miller-Tait, Fernando Luis de Souza Lopes
  • Publication number: 20180310398
    Abstract: Some aspects of this disclosure generally are related to improving the robustness of a flexible circuit structure, for example, by providing fault-tolerant electrical pathways for flow of electric current through the flexible circuit structure. In some embodiments, such fault tolerance is enhanced by way of a conductive mesh provided between an adjacent pair of resistive elements. Some aspects are related to improved voltage, current, or voltage and current measurement associated with various pairs of adjacent resistive elements at least when the various pairs have differing distances between them.
    Type: Application
    Filed: June 27, 2018
    Publication date: October 25, 2018
    Inventors: Daniel Robert Weinkam, Shane Fredrick Miller-Tait, Fernando Luis de Souza Lopes
  • Patent number: 10028376
    Abstract: Some aspects of this disclosure generally are related to improving the robustness of a flexible circuit structure, for example, by providing fault-tolerant electrical pathways for flow of electric current through the flexible circuit structure. In some embodiments, such fault tolerance is enhanced by way of a conductive mesh provided between an adjacent pair of resistive elements. Some aspects are related to improved voltage, current, or voltage and current measurement associated with various pairs of adjacent resistive elements at least when the various pairs have differing distances between them.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: July 17, 2018
    Assignee: KARDIUM INC.
    Inventors: Daniel Robert Weinkam, Shane Fredrick Miller-Tait, Fernando Luis de Souza Lopes
  • Publication number: 20180146540
    Abstract: Some aspects of this disclosure generally are related to improving the robustness of a flexible circuit structure, for example, by providing fault-tolerant electrical pathways for flow of electric current through the flexible circuit structure. In some embodiments, such fault tolerance is enhanced by way of a conductive mesh provided between an adjacent pair of resistive elements. Some aspects are related to improved voltage, current, or voltage and current measurement associated with various pairs of adjacent resistive elements at least when the various pairs have differing distances between them.
    Type: Application
    Filed: January 4, 2018
    Publication date: May 24, 2018
    Inventors: Daniel Robert Weinkam, Shane Fredrick Miller-Tait, Fernando Luis de Souza Lopes
  • Patent number: 9894756
    Abstract: Some aspects of this disclosure generally are related to improving the robustness of a flexible circuit structure, for example, by providing fault-tolerant electrical pathways for flow of electric current through the flexible circuit structure. In some embodiments, such fault tolerance is enhanced by way of a conductive mesh provided between an adjacent pair of resistive elements. Some aspects are related to improved voltage, current, or voltage and current measurement associated with various pairs of adjacent resistive elements at least when the various pairs have differing distances between them.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: February 13, 2018
    Assignee: KARDIUM INC.
    Inventors: Daniel Robert Weinkam, Shane Fredrick Miller-Tait, Fernando Luis de Souza Lopes
  • Publication number: 20180036077
    Abstract: A device positionable in a cavity of a bodily organ (e.g., a heart) may discriminate between fluid (e.g., blood) and non-fluid tissue (e.g., wall of heart) to provide information or a mapping indicative of a position and/or orientation of the device in the cavity. Discrimination may be based on flow, or some other characteristic, for example electrical permittivity or force. The device may selectively ablate portions of the non-fluid tissue based on the information or mapping. The device may detect characteristics (e.g., electrical potentials) indicative of whether ablation was successful. The device may include a plurality of transducers, intravascularly guided in an unexpanded configuration and positioned proximate the non-fluid tissue in an expanded configuration. Expansion mechanism may include helical member(s) or inflatable member(s).
    Type: Application
    Filed: October 16, 2017
    Publication date: February 8, 2018
    Inventors: Daniel GELBART, Douglas Wayne GOERTZEN, Fernando Luis de Souza LOPES
  • Publication number: 20180036074
    Abstract: A device positionable in a cavity of a bodily organ (e.g., a heart) may discriminate between fluid (e.g., blood) and non-fluid tissue (e.g., wall of heart) to provide information or a mapping indicative of a position and/or orientation of the device in the cavity. Discrimination may be based on flow, or some other characteristic, for example electrical permittivity or force. The device may selectively ablate portions of the non-fluid tissue based on the information or mapping. The device may detect characteristics (e.g., electrical potentials) indicative of whether ablation was successful. The device may include a plurality of transducers, intravascularly guided in an unexpanded configuration and positioned proximate the non-fluid tissue in an expanded configuration. Expansion mechanism may include helical member(s) or inflatable member(s).
    Type: Application
    Filed: October 16, 2017
    Publication date: February 8, 2018
    Inventors: Daniel GELBART, Douglas Wayne GOERTZEN, Fernando Luis de Souza LOPES
  • Publication number: 20180036075
    Abstract: A device positionable in a cavity of a bodily organ (e.g., a heart) may discriminate between fluid (e.g., blood) and non-fluid tissue (e.g., wall of heart) to provide information or a mapping indicative of a position and/or orientation of the device in the cavity. Discrimination may be based on flow, or some other characteristic, for example electrical permittivity or force. The device may selectively ablate portions of the non-fluid tissue based on the information or mapping. The device may detect characteristics (e.g., electrical potentials) indicative of whether ablation was successful. The device may include a plurality of transducers, intravascularly guided in an unexpanded configuration and positioned proximate the non-fluid tissue in an expanded configuration. Expansion mechanism may include helical member(s) or inflatable member(s).
    Type: Application
    Filed: October 16, 2017
    Publication date: February 8, 2018
    Inventors: Daniel GELBART, Douglas Wayne GOERTZEN, Fernando Luis de Souza LOPES