Patents by Inventor Fernando M. SILVEIRA

Fernando M. SILVEIRA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240047246
    Abstract: An advanced temperature control system and method are described for a wafer carrier in a plasma processing chamber. In one example a heat exchanger provides a temperature controlled thermal fluid to a fluid channel of a workpiece carrier and receives the thermal fluid from the fluid channel. A proportional valve is between the heat exchanger and the fluid channel to control the rate of flow of thermal fluid from the heat exchanger to the fluid channel. A pneumatic valve is also between the heat exchanger and the fluid channel also to control the rate of flow of thermal fluid from the heat exchanger and the fluid channel. A temperature controller receives a measured temperature from a thermal sensor of the carrier and controls the proportional valve and the pneumatic valve in response to the measured temperature to adjust the rate of flow of the thermal fluid.
    Type: Application
    Filed: October 18, 2023
    Publication date: February 8, 2024
    Inventors: Fernando M. Silveira, Chunlei Zhang, Phillip Criminale, Jaeyong Cho
  • Patent number: 11837479
    Abstract: An advanced temperature control system and method are described for a wafer carrier in a plasma processing chamber. In one example a heat exchanger provides a temperature controlled thermal fluid to a fluid channel of a workpiece carrier and receives the thermal fluid from the fluid channel. A proportional valve is between the heat exchanger and the fluid channel to control the rate of flow of thermal fluid from the heat exchanger to the fluid channel. A pneumatic valve is also between the heat exchanger and the fluid channel also to control the rate of flow of thermal fluid from the heat exchanger and the fluid channel. A temperature controller receives a measured temperature from a thermal sensor of the carrier and controls the proportional valve and the pneumatic valve in response to the measured temperature to adjust the rate of flow of the thermal fluid.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: December 5, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Fernando M. Silveira, Chunlei Zhang, Phillip Criminale, Jaeyong Cho
  • Publication number: 20230187176
    Abstract: A semiconductor processing system may include a semiconductor processing chamber configured to execute a recipe on a semiconductor wafer. The system may include a first plasma source to provide plasma to the semiconductor processing chamber and to be duty cycled during an execution of the recipe. The system may also include a second plasma source configured to maintain the plasma in the semiconductor processing chamber while the first plasma source is duty cycled.
    Type: Application
    Filed: December 15, 2021
    Publication date: June 15, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Kartik Ramaswamy, Kostiantyn Achkasov, Nicolas J. Bright, Fernando M. Silveira, Yang Yang, Yue Guo
  • Patent number: 10854425
    Abstract: Methods and systems for controlling temperatures in plasma processing chamber with reduced controller response times and increased stability. Temperature control is based at least in part on a feedforward control signal derived from a plasma power input into the processing chamber. A feedforward control signal compensating disturbances in the temperature attributable to the plasma power may be combined with a feedback control signal counteracting error between a measured and desired temperature.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: December 1, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Chetan Mahadeswaraswamy, Walter R Merry, Sergio Fukuda Shoji, Chunlei Zhang, Yashaswini Pattar, Duy D Nguyen, Tina Tsong, Shane C Nevil, Douglas A Buchberger, Jr., Fernando M Silveira, Brad L Mays, Kartik Ramaswamy, Hamid Noorbakhsh
  • Patent number: 10410889
    Abstract: In some embodiments, a plasma processing apparatus includes a processing chamber to process a substrate; a mounting surface defined within the processing chamber to support a substrate disposed within the processing chamber; a showerhead disposed within the processing chamber and aligned so as to face the mounting surface, the showerhead defining a plurality of orifices to introduce a process gas into the processing chamber toward a substrate disposed within the processing chamber; and one or more magnets supported by the showerhead and arranged so that a radial component of a magnetic field applied by each of the one or more magnets has a higher flux density proximate a first region corresponding to an edge surface region of a substrate when disposed within the processing chamber than at a second region corresponding to an interior surface region of a substrate when disposed within the processing chamber.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: September 10, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: S. M. Reza Sadjadi, Haitao Wang, Jie Zhou, Tza-Jing Gung, Chunlei Zhang, Fernando M. Silveira
  • Publication number: 20180061679
    Abstract: Methods and apparatus for a multi-chamber processing system having shared vacuum systems are disclosed herein. In some embodiments, a multi-chamber processing system for processing substrates includes a first process chamber; a second process chamber; a first vacuum system coupled to the first and second process chambers through first and second valves and to a first shared vacuum pump; and a second vacuum system coupled to the first and second process chambers through third and fourth valves and to a second shared vacuum pump, wherein the second vacuum system is fluidly independent from the first vacuum system.
    Type: Application
    Filed: August 23, 2017
    Publication date: March 1, 2018
    Inventors: Fernando M. SILVEIRA, Chunlei ZHANG, David ULLSTROM, Michael R. RICE
  • Publication number: 20170323813
    Abstract: An advanced temperature control system and method are described for a wafer carrier in a plasma processing chamber. In one example a heat exchanger provides a temperature controlled thermal fluid to a fluid channel of a workpiece carrier and receives the thermal fluid from the fluid channel. A proportional valve is between the heat exchanger and the fluid channel to control the rate of flow of thermal fluid from the heat exchanger to the fluid channel. A pneumatic valve is also between the heat exchanger and the fluid channel also to control the rate of flow of thermal fluid from the heat exchanger and the fluid channel. A temperature controller receives a measured temperature from a thermal sensor of the carrier and controls the proportional valve and the pneumatic valve in response to the measured temperature to adjust the rate of flow of the thermal fluid.
    Type: Application
    Filed: July 22, 2016
    Publication date: November 9, 2017
    Inventors: Fernando M. Silveira, Chunlei Zhang, Phillip Criminale, Jaeyong Cho
  • Publication number: 20160155612
    Abstract: Methods and systems for controlling temperatures in plasma processing chamber with reduced controller response times and increased stability. Temperature control is based at least in part on a feedforward control signal derived from a plasma power input into the processing chamber. A feedforward control signal compensating disturbances in the temperature attributable to the plasma power may be combined with a feedback control signal counteracting error between a measured and desired temperature.
    Type: Application
    Filed: February 2, 2016
    Publication date: June 2, 2016
    Inventors: Chetan MAHADESWARASWAMY, Walter R. MERRY, Sergio Fukuda SHOJI, Chunlei ZHANG, Yashaswini PATTAR, Duy D. NGUYEN, Tina TSONG, Shane C. NEVIL, Douglas A. BUCHBERGER, JR., Fernando M. SILVEIRA, Brad L. MAYS, Kartik RAMASWAMY, Hamid NOORBAKHSH
  • Patent number: 9338871
    Abstract: Methods and systems for controlling temperatures in plasma processing chamber with reduced controller response times and increased stability. Temperature control is based at least in part on a feedforward control signal derived from a plasma power input into the processing chamber. A feedforward control signal compensating disturbances in the temperature attributable to the plasma power may be combined with a feedback control signal counteracting error between a measured and desired temperature.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: May 10, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Chetan Mahadeswaraswamy, Walter R. Merry, Sergio Fukuda Shoji, Chunlei Zhang, Yashaswini B. Pattar, Duy D. Nguyen, Tina Tsong, Shane C. Nevil, Douglas A. Buchberger, Jr., Fernando M. Silveira, Brad L. Mays, Kartik Ramaswamy, Hamid Noorbakhsh
  • Publication number: 20160042961
    Abstract: A plasma reactor has an electron beam source as a plasma source and a rotation motor coupled to rotate the workpiece support about a rotation axis that is transverse to an emission path of said electron beam source.
    Type: Application
    Filed: August 6, 2014
    Publication date: February 11, 2016
    Inventors: Leonid Dorf, Hamid Tavassoli, Kenneth S. Collins, Kartik Ramaswamy, James D. Carducci, Shahid D. Rauf, Richard Fovell, Fernando M. Silveira, Mark Markovsky
  • Publication number: 20160027667
    Abstract: In some embodiments, a plasma processing apparatus includes a processing chamber to process a substrate; a mounting surface defined within the processing chamber to support a substrate disposed within the processing chamber; a showerhead disposed within the processing chamber and aligned so as to face the mounting surface, the showerhead defining a plurality of orifices to introduce a process gas into the processing chamber toward a substrate disposed within the processing chamber; and one or more magnets supported by the showerhead and arranged so that a radial component of a magnetic field applied by each of the one or more magnets has a higher flux density proximate a first region corresponding to an edge surface region of a substrate when disposed within the processing chamber than at a second region corresponding to an interior surface region of a substrate when disposed within the processing chamber.
    Type: Application
    Filed: June 30, 2015
    Publication date: January 28, 2016
    Inventors: S. M. REZA SADJADI, HAITAO WANG, JIE ZHOU, TZA-JING GUNG, CHUNLEI ZHANG, FERNANDO M. SILVEIRA
  • Patent number: 9214315
    Abstract: Methods and systems for controlling temperatures in plasma processing chamber via pulsed application of heating power and pulsed application of cooling power. In an embodiment, temperature control is based at least in part on a feedforward control signal derived from a plasma power input into the processing chamber. In further embodiments, fluid levels in each of a hot and cold reservoir coupled to the temperature controlled component are maintained in part by a passive leveling pipe coupling the two reservoirs. In another embodiment, digital heat transfer fluid flow control valves are opened with pulse widths dependent on a heating/cooling duty cycle value and a proportioning cycle having a duration that has been found to provide good temperature control performance.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: December 15, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Fernando M. Silveira, Hamid Tavassoli, Xiaoping Zhou, Shane C. Nevil, Douglas A. Buchberger, Brad L. Mays, Tina Tsong, Chetan Mahadeswaraswamy, Yashaswini B. Pattar, Duy D. Nguyen, Walter R. Merry
  • Publication number: 20150316941
    Abstract: Methods and systems for controlling temperatures in plasma processing chamber via pulsed application of heating power and pulsed application of cooling power. In an embodiment, temperature control is based at least in part on a feedforward control signal derived from a plasma power input into the processing chamber. In further embodiments, fluid levels in each of a hot and cold reservoir coupled to the temperature controlled component are maintained in part by a passive leveling pipe coupling the two reservoirs. In another embodiment, digital heat transfer fluid flow control valves are opened with pulse widths dependent on a heating/cooling duty cycle value and a proportioning cycle having a duration that has been found to provide good temperature control performance.
    Type: Application
    Filed: December 22, 2014
    Publication date: November 5, 2015
    Inventors: Fernando M. SILVEIRA, Hamid Tavassoli, Xiaoping Zhou, Shane C. Nevil, Douglas A. Buchberger, Brad L. Mays, Tina Tsong, Chetan Mahadeswaraswamy, Yashaswini B. Pattar, Duy D. Nguyen, Walter R. Merry
  • Patent number: 8916793
    Abstract: Methods and systems for controlling temperatures in plasma processing chamber via pulsed application of heating power and pulsed application of cooling power. In an embodiment, temperature control is based at least in part on a feedforward control signal derived from a plasma power input into the processing chamber. In further embodiments, fluid levels in each of a hot and cold reservoir coupled to the temperature controlled component are maintained in part by a passive leveling pipe coupling the two reservoirs. In another embodiment, digital heat transfer fluid flow control valves are opened with pulse widths dependent on a heating/cooling duty cycle value and a proportioning cycle having a duration that has been found to provide good temperature control performance.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: December 23, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Fernando M. Silveira, Hamid Tavassoli, Xiaoping Zhou, Shane C. Nevil, Douglas A. Buchberger, Brad L. Mays, Tina Tsong, Chetan Mahadeswaraswamy, Yashaswini B. Pattar, Duy D. Nguyen, Walter R. Merry
  • Publication number: 20120132397
    Abstract: Methods and systems for controlling temperatures in plasma processing chamber via pulsed application of heating power and pulsed application of cooling power. In an embodiment, temperature control is based at least in part on a feedforward control signal derived from a plasma power input into the processing chamber. In further embodiments, fluid levels in each of a hot and cold reservoir coupled to the temperature controlled component are maintained in part by a passive leveling pipe coupling the two reservoirs. In another embodiment, digital heat transfer fluid flow control valves are opened with pulse widths dependent on a heating/cooling duty cycle value and a proportioning cycle having a duration that has been found to provide good temperature control performance.
    Type: Application
    Filed: May 19, 2011
    Publication date: May 31, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Fernando M. Silveira, Hamid Tavassoli, Xiaoping Zhou, Shane C. Nevil, Douglas A. Buchberger, Brad L. Mays, Tina Tsong, Chetan Mahadeswaraswamy, Yashaswini B. Pattar, Duy D. Nguyen, Walter R. Merry
  • Publication number: 20110186545
    Abstract: Methods and systems for controlling temperatures in plasma processing chamber with reduced controller response times and increased stability. Temperature control is based at least in part on a feedforward control signal derived from a plasma power input into the processing chamber. A feedforward control signal compensating disturbances in the temperature attributable to the plasma power may be combined with a feedback control signal counteracting error between a measured and desired temperature.
    Type: Application
    Filed: October 15, 2010
    Publication date: August 4, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Chetan MAHADESWARASWAMY, Walter R. MERRY, Sergio Fukuda SHOJI, Chunlei ZHANG, Yashaswini B. PATTAR, Duy D. NGUYEN, Tina TSONG, Shane C. NEVIL, Douglas A. BUCHBERGER, JR., Fernando M. SILVEIRA, Brad L. MAYS, Kartik RAMASWAMY, Hamid NOORBAKHSH