Patents by Inventor Feyisope Eweje

Feyisope Eweje has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240108241
    Abstract: Drug delivery articles, resident articles, and retrieval systems e.g., for gram-level dosing, are generally provided. In some embodiments, the residence articles are configured for transesophageal administration, transesophageal retrieval, and/or gastric retention to/in a subject. In certain embodiments, the residence article includes dimensions configured for transesophageal administration with a gastric resident system. In some cases, the residence article may be configured to control drug release e.g., with zero-order drug kinetics with no potential for burst release for weeks to months. In some embodiments, the residence articles described herein comprise biocompatible materials and/or are safe for gastric retention. In certain embodiments, the residence article includes dimensions configured for transesophageal retrieval. In some cases, the residence articles described herein may comprise relatively large doses of drug (e.g., greater than or equal to 1 gram).
    Type: Application
    Filed: December 15, 2023
    Publication date: April 4, 2024
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc., The General Hospital Corporation
    Inventors: Robert S. Langer, Carlo Giovanni Traverso, Malvika Verma, Feyisope Eweje, Christoph Winfried Johannes Steiger, Junwei Li, Nhi Phan, Hen-Wei Huang, Jacqueline Chu, John Ashraf Fou Salama
  • Patent number: 11850034
    Abstract: Drug delivery articles, resident articles, and retrieval systems e.g., for gram-level dosing, are generally provided. In some embodiments, the residence articles are configured for transesophageal administration, transesophageal retrieval, and/or gastric retention to/in a subject. In certain embodiments, the residence article includes dimensions configured for transesophageal administration with a gastric resident system. In some cases, the residence article may be configured to control drug release e.g., with zero-order drug kinetics with no potential for burst release for weeks to months. In some embodiments, the residence articles described herein comprise biocompatible materials and/or are safe for gastric retention. In certain embodiments, the residence article includes dimensions configured for transesophageal retrieval. In some cases, the residence articles described herein may comprise relatively large doses of drug (e.g., greater than or equal to 1 gram).
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: December 26, 2023
    Assignees: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Robert S. Langer, Carlo Giovanni Traverso, Malvika Verma, Feyisope Eweje, Christoph Winfried Johannes Steiger, Junwei Li, Nhi Phan, Hen-Wei Huang, Jacqueline Chu, John Ashraf Fou Salama
  • Publication number: 20230256182
    Abstract: The present invention is a respiratory monitoring device which uses 2+ sensors to map respiratory motion in patients to interpret into a respiratory effort and severity score. The core components of the invention are contact-based sensors that measure relative motion of the chest, abdomen, and/or other key anatomical features, a processing unit which takes in the data from all sensors, an algorithm that analyzes and compares the data from each sensor to understand relative motion and interpret it into clinically-relevant information, and a display screen that shares this information with clinicians. The sensors are connected to each other and the information processing unit which shares data with the screen for display of a respiratory severity score based on analysis of Thoraco-Abdominal Asynchrony (TAA) or similar indicators of respiratory effort as measured by the sensor network and analyzed by the algorithm.
    Type: Application
    Filed: April 6, 2023
    Publication date: August 17, 2023
    Applicant: Disati Medical, Inc.
    Inventors: Feyisope Eweje, Ryan Carroll, Aaron Rose, Noa Ghersin Wyrobnik, Zoe Jewell Wolszon
  • Patent number: 11679217
    Abstract: The present invention is a respiratory monitoring device which uses 2+ sensors to map respiratory motion in patients to interpret into a respiratory effort and severity score. The core components of the invention are contact-based sensors that measure relative motion of the chest, abdomen, and/or other key anatomical features, a processing unit which takes in the data from all sensors, an algorithm that analyzes and compares the data from each sensor to understand relative motion and interpret it into clinically-relevant information, and a display screen that shares this information with clinicians. The sensors are connected to each other and the information processing unit which shares data with the screen for display of a respiratory severity score based on analysis of Thoraco-Abdominal Asynchrony (TAA) or similar indicators of respiratory effort as measured by the sensor network and analyzed by the algorithm.
    Type: Grant
    Filed: May 24, 2022
    Date of Patent: June 20, 2023
    Assignee: DISATI MEDICAL, INC.
    Inventors: Feyisope Eweje, Ryan Carroll, Aaron Rose, Noa Ghersin Wyrobnik, Zoe Jewell Wolszon
  • Patent number: 11576860
    Abstract: Drug delivery articles, resident articles, and retrieval systems e.g., for gram-level dosing, are generally provided. In some embodiments, the articles are configured for transesophageal administration, transesophageal retrieval, and/or gastric retention to/in a subject. In certain embodiments, the article includes dimensions configured for transesophageal administration with a gastric resident system. In some cases, the article may be configured to control drug release e.g., with zero-order drug kinetics with no potential for burst release for weeks to months. In some embodiments, the articles described herein comprise biocompatible materials and/or are safe for gastric retention. In certain embodiments, the article includes dimensions configured for transesophageal retrieval. In some cases, the articles described herein may comprise relatively large doses of drug (e.g., greater than or equal to 1 gram).
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: February 14, 2023
    Assignees: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Carlo Giovanni Traverso, Robert S. Langer, Malvika Verma, Niclas Roxhed, Feyisope Eweje, Macy Castaneda
  • Publication number: 20220288333
    Abstract: The present invention is a respiratory monitoring device which uses 2+ sensors to map respiratory motion in patients to interpret into a respiratory effort and severity score. The core components of the invention are contact-based sensors that measure relative motion of the chest, abdomen, and/or other key anatomical features, a processing unit which takes in the data from all sensors, an algorithm that analyzes and compares the data from each sensor to understand relative motion and interpret it into clinically-relevant information, and a display screen that shares this information with clinicians. The sensors are connected to each other and the information processing unit which shares data with the screen for display of a respiratory severity score based on analysis of Thoraco-Abdominal Asynchrony (TAA) or similar indicators of respiratory effort as measured by the sensor network and analyzed by the algorithm.
    Type: Application
    Filed: May 24, 2022
    Publication date: September 15, 2022
    Inventors: Feyisope Eweje, Ryan Carroll, Aaron Rose, Noa Ghersin, Zoe Jewell Wolszon
  • Publication number: 20210353174
    Abstract: Drug delivery articles, resident articles, and retrieval systems e.g., for gram-level dosing, are generally provided. In some embodiments, the residence articles are configured for transesophageal administration, transesophageal retrieval, and/or gastric retention to/in a subject. In certain embodiments, the residence article includes dimensions configured for transesophageal administration with a gastric resident system. In some cases, the residence article may be configured to control drug release e.g., with zero-order drug kinetics with no potential for burst release for weeks to months. In some embodiments, the residence articles described herein comprise biocompatible materials and/or are safe for gastric retention. In certain embodiments, the residence article includes dimensions configured for transesophageal retrieval. In some cases, the residence articles described herein may comprise relatively large doses of drug (e.g., greater than or equal to 1 gram).
    Type: Application
    Filed: May 12, 2021
    Publication date: November 18, 2021
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc., The General Hospital Corporation
    Inventors: Robert S. Langer, Carlo Giovanni Traverso, Malvika Verma, Feyisope Eweje, Christoph Winfried Johannes Steiger, Junwei Li, Nhi Phan, Hen-Wei Huang, Jacqueline Chu, John Ashraf Fou Salama
  • Publication number: 20190365418
    Abstract: Drug delivery articles, resident articles, and retrieval systems e.g., for gram-level dosing, are generally provided. In some embodiments, the articles are configured for transesophageal administration, transesophageal retrieval, and/or gastric retention to/in a subject. In certain embodiments, the article includes dimensions configured for transesophageal administration with a gastric resident system. In some cases, the article may be configured to control drug release e.g., with zero-order drug kinetics with no potential for burst release for weeks to months. In some embodiments, the articles described herein comprise biocompatible materials and/or are safe for gastric retention. In certain embodiments, the article includes dimensions configured for transesophageal retrieval. In some cases, the articles described herein may comprise relatively large doses of drug (e.g., greater than or equal to 1 gram).
    Type: Application
    Filed: May 31, 2019
    Publication date: December 5, 2019
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Carlo Giovanni Traverso, Robert S. Langer, Malvika Verma, Niclas Roxhed, Feyisope Eweje, Macy Castaneda