Patents by Inventor Filip Öhman

Filip Öhman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8787412
    Abstract: Method for calibrating and tuning a part wise monotonically, continuously tunable semiconductor laser having a phase section and a first Bragg reflector section, through which sections a phase current and a first reflector current, respectively, are applied, which laser is not actively cooled, includes a) a calibration step, including obtaining at least two tuning lines along which tuning lines all combinations of phase and Bragg currents are stable operating points, identifying at least one reference stable operating point along a first one of the identified tuning lines at which operating point the laser emits light at a certain reference frequency, and storing at least one reference stable operating point; and b) a subsequent tuning step, during which the output frequency of the laser in relation to the reference frequency is controlled to a desired output frequency by translating the operating point of the laser along the first tuning line.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: July 22, 2014
    Assignee: Syntune AB
    Inventors: Urban Eriksson, Robert Lewén, Jan-Olof Wesström, Filip Öhman
  • Patent number: 8665917
    Abstract: Method for calibrating a tunable semiconductor laser having a phase section and a first Bragg reflector section, through which sections a phase current and a first reflector current, respectively, is applied, includes: a) selecting a phase current; b) identifying a range of reflector currents that achieves emission of light from the laser within a desired frequency band; c) scanning the reflector current(s) over the range of reflector currents, for each of at least two different phase currents, and reading the relative output power of the laser for each point scanned; d) identifying one stable operating point; e) identifying and storing one stable, continuous tuning line as constructed by interpolating; f) calibrating the laser frequency and observing a fed back signal from a target for the light emitted from the laser; g) measuring the temperature of the laser; and h) storing temperature and one operating point along the tuning line.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: March 4, 2014
    Assignee: Syntune AB
    Inventors: Urban Eriksson, Robert Lewén, Jan-Olof Wesström, Filip Öhman
  • Publication number: 20130243014
    Abstract: Method for calibrating and tuning a part wise monotonically, continuously tunable semiconductor laser having a phase section and a first Bragg reflector section, through which sections a phase current and a first reflector current, respectively, are applied, which laser is not actively cooled, includes a) a calibration step, including obtaining at least two tuning lines along which tuning lines all combinations of phase and Bragg currents are stable operating points, identifying at least one reference stable operating point along a first one of the identified tuning lines at which operating point the laser emits light at a certain reference frequency, and storing at least one reference stable operating point; and b) a subsequent tuning step, during which the output frequency of the laser in relation to the reference frequency is controlled to a desired output frequency by translating the operating point of the laser along the first tuning line.
    Type: Application
    Filed: October 5, 2011
    Publication date: September 19, 2013
    Applicant: SYNTUNE AB
    Inventors: Urban Eriksson, Robert Lewén, Jan-Olof Wesström, Filip Öhman
  • Publication number: 20130243015
    Abstract: Method for calibrating a tunable semiconductor laser having a phase section and a first Bragg reflector section, through which sections a phase current and a first reflector current, respectively, is applied, includes: a) selecting a phase current; b) identifying a range of reflector currents that achieves emission of light from the laser within a desired frequency band; c) scanning the reflector current(s) over the range of reflector currents, for each of at least two different phase currents, and reading the relative output power of the laser for each point scanned; d) identifying one stable operating point; e) identifying and storing one stable, continuous tuning line as constructed by interpolating; f) calibrating the laser frequency and observing a fed back signal from a target for the light emitted from the laser; g) measuring the temperature of the laser; and h) storing temperature and one operating point along the tuning line.
    Type: Application
    Filed: October 5, 2011
    Publication date: September 19, 2013
    Applicant: SYNTUNE AB
    Inventors: Urban Eriksson, Robert Lewén, Jan-Olof Wesström, Filip Öhman