Patents by Inventor Filipe Cabrita Condessa

Filipe Cabrita Condessa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11657290
    Abstract: A machine learning system includes encoder and decoder networks. The machine learning system is configured to obtain input data, which includes sensor data and a radius of an p norm ball of admissible perturbations. Input bounding data is generated based on the input data. First bounding data and second bounding data are generated by respectively propagating the input bounding data on first and second outputs of the encoder network. Third bounding data is generated in association with a latent variable based on the first bounding data and the second bounding data. Fourth bounding data is generated by propagating the third bounding data on an output of the decoder network. A robustness certificate is established with respect to the input data by generating a lower bound of an evidence lower bound based on the first, second, third, and fourth bounding data.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: May 23, 2023
    Assignee: Robert Bosch GmbH
    Inventors: Filipe Cabrita Condessa, Jeremy Zico Kolter
  • Patent number: 11526965
    Abstract: A computer-implemented method includes applying a filter to input data based on an initial set of parameters to generate an initial feature map. The filter is configured to activate a filter function that involves a periodic function. The method includes performing a first linear transform on the initial feature map based on a subset of a first set of parameters to generate a first linear transform. The method includes applying the filter to the input data based on another subset of the first set of parameters to generate a first feature map. The method includes performing a multiplicative operation on the first linear transform and the first feature map to generate a first product. The method includes performing a second linear transform on the first product based on a subset of a second set of parameters to generate a second linear transform. The method includes generating output data that takes into account at least the second linear transform.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: December 13, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Devin Willmott, Anit Kumar Sahu, Rizal Fathony, Filipe Cabrita Condessa, Jeremy Zieg Kolter
  • Publication number: 20220101496
    Abstract: A computer-implemented method includes applying a filter to input data based on an initial set of parameters to generate an initial feature map. The filter is configured to activate a filter function that involves a periodic function. The method includes performing a first linear transform on the initial feature map based on a subset of a first set of parameters to generate a first linear transform. The method includes applying the filter to the input data based on another subset of the first set of parameters to generate a first feature map. The method includes performing a multiplicative operation on the first linear transform and the first feature map to generate a first product. The method includes performing a second linear transform on the first product based on a subset of a second set of parameters to generate a second linear transform. The method includes generating output data that takes into account at least the second linear transform.
    Type: Application
    Filed: September 28, 2020
    Publication date: March 31, 2022
    Inventors: Devin Willmott, Anit Kumar Sahu, Rizal Fathony, Filipe Cabrita Condessa, Jeremy Zieg Kolter
  • Publication number: 20210125107
    Abstract: A machine learning system includes encoder and decoder networks. The machine learning system is configured to obtain input data, which includes sensor data and a radius of an p norm ball of admissible perturbations. Input bounding data is generated based on the input data. First bounding data and second bounding data are generated by respectively propagating the input bounding data on first and second outputs of the encoder network. Third bounding data is generated in association with a latent variable based on the first bounding data and the second bounding data. Fourth bounding data is generated by propagating the third bounding data on an output of the decoder network. A robustness certificate is established with respect to the input data by generating a lower bound of an evidence lower bound based on the first, second, third, and fourth bounding data.
    Type: Application
    Filed: October 28, 2019
    Publication date: April 29, 2021
    Inventors: Filipe Cabrita Condessa, Jeremy Zico Kolter