Patents by Inventor Firas Hamze

Firas Hamze has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240127368
    Abstract: A general methodology is presented for optimizing a value at risk (VaR) associated with an allocation of objects (i.e., a strategy) having variable performance and loss characteristics. For purposes of illustration, investment strategies prescribing a portfolio of items from a set of candidates with unknown and generally correlated joint losses are discussed. The framework is based on approximating the VaR using nonparametric estimates of the portfolio loss density and, using mathematical insights, an efficient approach to computing the VaR gradient with respect to the strategy. The approach also allows inclusion of constraints on the strategy (e.g. a maximum fraction per item) and allows the VaR optimization problem to be solved using optimization techniques such as sequential quadratic programming.
    Type: Application
    Filed: September 16, 2022
    Publication date: April 18, 2024
    Applicant: Microsoft Technology Licensing, LLC
    Inventor: Firas Hamze
  • Publication number: 20230306290
    Abstract: A computing device including a processor configured to receive an exact objective function over a state space. The processor may receive an approximated objective function that approximates the exact objective function. The processor may compute an estimated optimal state of the exact objective function. Computing the estimated optimal state may include, starting at an initial state, computing a preliminary estimated optimal state by performing a plurality of fast-step iterations of a Monte Carlo algorithm with respective fast-step acceptance probabilities determined based at least in part on the approximated objective function. Computing the estimated optimal state may further include performing a correction iteration that has a correction-step acceptance probability determined based at least in part on respective values of the approximated objective function and the exact objective function computed at the preliminary estimated optimal state. The processor may output the estimated optimal state.
    Type: Application
    Filed: March 21, 2022
    Publication date: September 28, 2023
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Firas HAMZE, Jonathan Lee MACHTA
  • Patent number: 11579947
    Abstract: A method for use with a computing device. The method may include receiving a data set including a plurality of univariate data points and determining a target kernel bandwidth for a kernel density estimator (KDE). Determining the target kernel bandwidth may include computing a plurality of sample KDEs and selecting the target kernel bandwidth based on the sample KDEs. The method may further include computing the KDE for the data set using the target kernel bandwidth. For one or more tail regions of the data set, the method may further include computing one or more respective tail extensions. The method may further include computing and outputting a renormalized piecewise density estimator that, in each tail region, equals a renormalization of the respective tail extension for that tail region, and, outside the one or more tail regions, equals a renormalization of the KDE.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: February 14, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Firas Hamze, Helmut Gottfried Katzgraber
  • Publication number: 20220374718
    Abstract: A computing system, including a processor configured to train a machine learning model in a plurality of backpropagation iterations. Each backpropagation iteration may include generating a coordinate pair sequence. Each coordinate pair may be unique within the coordinate pair sequence and may include non-matching coordinates. The backpropagation iteration may further include receiving parametrizing angles respectively associated with the coordinate pairs. The backpropagation iteration may further include computing a unitary matrix parametrized by the parametrizing angles, computing a loss gradient matrix, and computing a Jacobian-vector product (JVP). Computing the JVP may include computing a rotated unitary matrix and a rotated loss gradient matrix for each coordinate pair. The JVP may be computed from the rotated unitary matrix and the rotated loss gradient matrix. The backpropagation iteration may further include updating the parametrizing angles based at least in part on the JVP.
    Type: Application
    Filed: May 12, 2021
    Publication date: November 24, 2022
    Applicant: Microsoft Technology Licensing, LLC
    Inventor: Firas HAMZE
  • Publication number: 20220092152
    Abstract: The systems, devices, articles, and methods generally relate to sampling from an available probability distribution. The samples may be used to create a desirable probability distribution, for instance for use in computing values used in computational techniques including: Importance Sampling and Markov chain Monte Carlo systems. An analog processor may operate as a sample generator, for example by: programming the analog processor with a configuration of the number of programmable parameters for the analog processor, which corresponds to a probability distribution over qubits of the analog processor, evolving the analog processor, and reading out states for the qubits. The states for the qubits in the plurality of qubits correspond to a sample from the probability distribution. Operation of the sampling device may be summarized as including updating a set of samples to include the sample from the probability distribution, and returning the set of samples.
    Type: Application
    Filed: November 23, 2021
    Publication date: March 24, 2022
    Inventors: Firas Hamze, James King, Evgeny Andriyash, Catherine McGeoch, Jack Raymond, Jason Rolfe, William G. Macready, Aaron Lott, Murray C. Thom
  • Publication number: 20220050731
    Abstract: A method for use with a computing device. The method may include receiving a data set including a plurality of univariate data points and determining a target kernel bandwidth for a kernel density estimator (KDE). Determining the target kernel bandwidth may include computing a plurality of sample KDEs and selecting the target kernel bandwidth based on the sample KDEs. The method may further include computing the KDE for the data set using the target kernel bandwidth. For one or more tail regions of the data set, the method may further include computing one or more respective tail extensions. The method may further include computing and outputting a renormalized piecewise density estimator that, in each tail region, equals a renormalization of the respective tail extension for that tail region, and, outside the one or more tail regions, equals a renormalization of the KDE.
    Type: Application
    Filed: October 13, 2020
    Publication date: February 17, 2022
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Firas HAMZE, Helmut Gottfried KATZGRABER
  • Patent number: 11238131
    Abstract: The systems, devices, articles, and methods generally relate to sampling from an available probability distribution. The samples maybe used to create a desirable probability distribution, for instance for use in computing values used in computational techniques including: Importance Sampling and Markov chain Monte Carlo systems. An analog processor may operate as a sample generator, for example by: programming the analog processor with a configuration of the number of programmable parameters for the analog processor, which corresponds to a probability distribution over qubits of the analog processor, evolving the analog processor, and reading out states for the qubits. The states for the qubits in the plurality of qubits correspond to a sample from the probability distribution. Operation of the sampling device may be summarized as including updating a set of samples to include the sample from the probability distribution, and returning the set of samples.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: February 1, 2022
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Firas Hamze, James King, Evgeny Andriyash, Catherine McGeoch, Jack Raymond, Jason Rolfe, William G. Macready, Aaron Lott, Murray C. Thom
  • Publication number: 20210019647
    Abstract: A hybrid computer comprising a quantum processor can be operated to perform a scalable comparison of high-entropy samplers. Performing a scalable comparison of high-entropy samplers can include comparing entropy and KL divergence of post-processed samplers. A hybrid computer comprising a quantum processor generates samples for machine learning. The quantum processor is trained by matching data statistics to statistics of the quantum processor. The quantum processor is tuned to match moments of the data.
    Type: Application
    Filed: September 24, 2020
    Publication date: January 21, 2021
    Inventors: William G. Macready, Firas Hamze, Fabian A. Chudak, Mani Ranjbar, Jack R. Raymond, Jason T. Rolfe
  • Patent number: 10817796
    Abstract: A hybrid computer comprising a quantum processor can be operated to perform a scalable comparison of high-entropy samplers. Performing a scalable comparison of high-entropy samplers can include comparing entropy and KL divergence of post-processed samplers. A hybrid computer comprising a quantum processor generates samples for machine learning. The quantum processor is trained by matching data statistics to statistics of the quantum processor. The quantum processor is tuned to match moments of the data.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: October 27, 2020
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: William G. Macready, Firas Hamze, Fabian A. Chudak, Mani Ranjbar, Jack R. Raymond, Jason T. Rolfe
  • Patent number: 10467543
    Abstract: Quantum processor based techniques minimize an objective function for example by operating the quantum processor as a sample generator providing low-energy samples from a probability distribution with high probability. The probability distribution is shaped to assign relative probabilities to samples based on their corresponding objective function values until the samples converge on a minimum for the objective function. Problems having a number of variables and/or a connectivity between variables that does not match that of the quantum processor may be solved. Interaction with the quantum processor may be via a digital computer. The digital computer stores a hierarchical stack of software modules to facilitate interacting with the quantum processor via various levels of programming environment, from a machine language level up to an end-use applications level.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: November 5, 2019
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: William G. Macready, Mani Ranjbar, Firas Hamze, Geordie Rose, Suzanne Gildert
  • Patent number: 9881256
    Abstract: Computational systems implement problem solving using heuristic solvers or optimizers. Such may iteratively evaluate a result of processing, and modify the problem or representation thereof before repeating processing on the modified problem, until a termination condition is reached. Heuristic solvers or optimizers may execute on one or more digital processors and/or one or more quantum processors. The system may autonomously select between types of hardware devices and/or types of heuristic optimization algorithms. Such may coordinate or at least partially overlap post-processing operations with processing operations, for instance performing post-processing on an ith batch of samples while generating an (i+1)th batch of samples, e.g., so post-processing operation on the ith batch of samples does not extend in time beyond the generation of the (i+1)th batch of samples. Heuristic optimizers selection is based on pre-processing assessment of the problem, e.g.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: January 30, 2018
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Firas Hamze, Andrew Douglas King, Jack Raymond, Aidan Patrick Roy, Robert Israel, Evgeny Andriyash, Catherine McGeoch, Mani Ranjbar
  • Publication number: 20170255872
    Abstract: Computational systems implement problem solving using heuristic solvers or optimizers. Such may iteratively evaluate a result of processing, and modify the problem or representation thereof before repeating processing on the modified problem, until a termination condition is reached. Heuristic solvers or optimizers may execute on one or more digital processors and/or one or more quantum processors. The system may autonomously select between types of hardware devices and/or types of heuristic optimization algorithms. Such may coordinate or at least partially overlap post-processing operations with processing operations, for instance performing post-processing on an ith batch of samples while generating an (i+1)th batch of samples, e.g., so post-processing operation on the ith batch of samples does not extend in time beyond the generation of the (i+1)th batch of samples. Heuristic optimizers selection is based on pre-processing assessment of the problem, e.g.
    Type: Application
    Filed: August 21, 2015
    Publication date: September 7, 2017
    Inventors: Firas Hamze, Andrew Douglas King, Jack Raymond, Aidan Patrick Roy, Robert Israel, Evgeny Andriyash, Catherine McGeoch, Mani Ranjbar
  • Publication number: 20170255871
    Abstract: A hybrid computer comprising a quantum processor can be operated to perform a scalable comparison of high-entropy samplers. Performing a scalable comparison of high-entropy samplers can include comparing entropy and KL divergence of post-processed samplers. A hybrid computer comprising a quantum processor generates samples for machine learning. The quantum processor is trained by matching data statistics to statistics of the quantum processor. The quantum processor is tuned to match moments of the data.
    Type: Application
    Filed: March 7, 2017
    Publication date: September 7, 2017
    Inventors: William G. Macready, Firas Hamze, Fabian A. Chudak, Mani Ranjbar, Jack R. Raymond, Jason T. Rolfe
  • Publication number: 20170116159
    Abstract: The systems, devices, articles, and methods generally relate to sampling from an available probability distribution. The samples maybe used to create a desirable probability distribution, for instance for use in computing values used in computational techniques including: Importance Sampling and Markov chain Monte Carlo systems. An analog processor may operate as a sample generator, for example by: programming the analog processor with a configuration of the number of programmable parameters for the analog processor, which corresponds to a probability distribution over qubits of the analog processor, evolving the analog processor, and reading out states for the qubits. The states for the qubits in the plurality of qubits correspond to a sample from the probability distribution. Operation of the sampling device may be summarized as including updating a set of samples to include the sample from the probability distribution, and returning the set of samples.
    Type: Application
    Filed: January 5, 2017
    Publication date: April 27, 2017
    Inventors: Firas Hamze, James King, Evgeny Andriyash, Catherine McGeoch, Jack Raymond, Jason Rolfe, William G. Macready, Aaron Lott, Murray C. Thom
  • Patent number: 9588940
    Abstract: The systems, devices, articles, and methods generally relate to sampling from an available probability distribution. The samples maybe used to create a desirable probability distribution, for instance for use in computing values used in computational techniques including: Importance Sampling and Markov chain Monte Carlo systems. An analog processor may operate as a sample generator, for example by: programming the analog processor with a configuration of the number of programmable parameters for the analog processor, which corresponds to a probability distribution over qubits of the analog processor, evolving the analog processor, and reading out states for the qubits. The states for the qubits in the plurality of qubits correspond to a sample from the probability distribution. Operation of the sampling device may be summarized as including updating a set of samples to include the sample from the probability distribution, and returning the set of samples.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: March 7, 2017
    Assignee: D-Wave Systems Inc.
    Inventors: Firas Hamze, James King, Evgeny Andriyash, Catherine McGeoch, Jack Raymond, Jason Rolfe, William G. Macready, Aaron Lott, Murray C. Thom
  • Publication number: 20160042294
    Abstract: Quantum processor based techniques minimize an objective function for example by operating the quantum processor as a sample generator providing low-energy samples from a probability distribution with high probability. The probability distribution is shaped to assign relative probabilities to samples based on their corresponding objective function values until the samples converge on a minimum for the objective function. Problems having a number of variables and/or a connectivity between variables that does not match that of the quantum processor may be solved. Interaction with the quantum processor may be via a digital computer. The digital computer stores a hierarchical stack of software modules to facilitate interacting with the quantum processor via various levels of programming environment, from a machine language level up to an end-use applications level.
    Type: Application
    Filed: October 22, 2015
    Publication date: February 11, 2016
    Inventors: William G. Macready, Mani Ranjbar, Firas Hamze, Geordie Rose, Suzanne Gildert
  • Patent number: 9218567
    Abstract: Quantum processor based techniques minimize an objective function for example by operating the quantum processor as a sample generator providing low-energy samples from a probability distribution with high probability. The probability distribution is shaped to assign relative probabilities to samples based on their corresponding objective function values until the samples converge on a minimum for the objective function. Problems having a number of variables and/or a connectivity between variables that does not match that of the quantum processor may be solved. Interaction with the quantum processor may be via a digital computer. The digital computer stores a hierarchical stack of software modules to facilitate interacting with the quantum processor via various levels of programming environment, from a machine language level up to an end-use applications level.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: December 22, 2015
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: William G. Macready, Mani Ranjbar, Firas Hamze, Geordie Rose, Suzanne Gildert
  • Publication number: 20150269124
    Abstract: The systems, devices, articles, and methods generally relate to sampling from an available probability distribution. The samples maybe used to create a desirable probability distribution, for instance for use in computing values used in computational techniques including: Importance Sampling and Markov chain Monte Carlo systems. An analog processor may operate as a sample generator, for example by: programming the analog processor with a configuration of the number of programmable parameters for the analog processor, which corresponds to a probability distribution over qubits of the analog processor, evolving the analog processor, and reading out states for the qubits. The states for the qubits in the plurality of qubits correspond to a sample from the probability distribution. Operation of the sampling device may be summarized as including updating a set of samples to include the sample from the probability distribution, and returning the set of samples.
    Type: Application
    Filed: April 1, 2015
    Publication date: September 24, 2015
    Inventors: Firas Hamze, James King, Evgeny Andriyash, Catherine McGeoch, Jack Raymond, Jason Rolfe, William G. Macready, Aaron Lott, Murray C. Thom
  • Publication number: 20150161524
    Abstract: The techniques and structures described herein generally relate to sampling from an available probability distribution to create a desirable probability distribution. This resultant distribution can be used for computing values used in computational techniques including: Importance Sampling and Markov chain Monte Carlo systems.
    Type: Application
    Filed: December 4, 2014
    Publication date: June 11, 2015
    Inventor: Firas Hamze
  • Publication number: 20140187427
    Abstract: Quantum processor based techniques minimize an objective function for example by operating the quantum processor as a sample generator providing low-energy samples from a probability distribution with high probability. The probability distribution is shaped to assign relative probabilities to samples based on their corresponding objective function values until the samples converge on a minimum for the objective function. Problems having a number of variables and/or a connectivity between variables that does not match that of the quantum processor may be solved. Interaction with the quantum processor may be via a digital computer. The digital computer stores a hierarchical stack of software modules to facilitate interacting with the quantum processor via various levels of programming environment, from a machine language level up to an end-use applications level.
    Type: Application
    Filed: July 6, 2012
    Publication date: July 3, 2014
    Applicant: D-WAVE SYSTEMS INC.
    Inventors: William G. Macready, Mani Ranjbar, Firas Hamze, Geordie Rose, Suzanne Gildert