Patents by Inventor Flavia Fong

Flavia Fong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070109078
    Abstract: A ferroelectric loaded waveguide resonator capable of operation at microwave, millimeter-wave and higher frequencies and suitable for integration into a three-dimensional monolithic microwave integrated circuit (3D MMIC) is disclosed. The resonator includes a resonator cavity, which, in one form of the invention, is formed by two parallel metal layers and a metallized wall structure extending between the metal layers. The cavity is filled with dielectric material and includes a layer of ferroelectric material, which is used to control the resonant frequency by varying a voltage bias applied to the ferroelectric layer. The cavity includes a slot in one of the metal layers and a coupling strip formed adjacent to the slot to provide electromagnetic coupling to other components, such as a voltage controlled oscillator (VCO). The invention can also be applied to other multi-metal semiconductor or wafer level packaging technologies.
    Type: Application
    Filed: November 14, 2005
    Publication date: May 17, 2007
    Inventors: Mark Kintis, Flavia Fong, Thomas Wong, Xing Lan
  • Publication number: 20070069824
    Abstract: A three dimensional (3D) microwave monolithic integrated circuit (MMIC) multi-push voltage controlled oscillator (VCO) and methods of making the same is provided. The 3D MMIC multi-push oscillator includes a plurality of matching frequency oscillators coupled to a phasing ring in substantially equidistantly spaced apart locations. A combined VCO output signal is provided at a central output connection point of the phasing ring. The central output connection point resides on a first plane. An output conductor transition has a first end coupled to the central output connection point and a second end provided as an output to the quad-push VCO. The output conductor transition extends transverse to the first plane and terminates at a second plane separated from the first plane. The multi-push oscillator can be a push-push, quad-push or N-push type VCO based on a particular implementation.
    Type: Application
    Filed: September 27, 2005
    Publication date: March 29, 2007
    Inventors: Mark Kintis, Flavia Fong, Thomas Wong, Xing Lan
  • Publication number: 20070052491
    Abstract: A three dimensional (3D) monolithic integrated circuit (MMIC) balun and methods of making the same are provided. A primary spiral winding is spaced apart from a secondary primary winding by a gap in a substantially aligned stacked configuration forming a balun. The gap medium can be a low dielectric constant material if employing a multi-metal process or air if employing a wafer level packaging process.
    Type: Application
    Filed: September 2, 2005
    Publication date: March 8, 2007
    Inventors: Mark Kintis, Flavia Fong, Xing Lan
  • Publication number: 20070008048
    Abstract: A pulse generating circuit and related method, for producing extremely narrow pulses for use in monolithic microwave integrated circuits (MMICs) for radar, high-speed sampling, pulse radio and other applications. A sinusoidal input signal is supplied to two nonlinear shock wave generators, which are oppositely biased to produce periodic outputs that are mirror images of each other, one with a very steep rising edge and one with a very steep falling edge. The combined outputs would cancel each other completely but for the introduction of a slight time delay in one of them, which results in a narrow peak in the combined signals.
    Type: Application
    Filed: July 6, 2005
    Publication date: January 11, 2007
    Inventors: Mark Kintis, Flavia Fong
  • Publication number: 20060158277
    Abstract: A comb frequency generator that is tunable to vary the width of the pulses in the output signal and achieve a maximum power output at different harmonic frequencies. A wavefront compression device receives a sinusoidal input signal and provides wavefront compression to create a compressed signal having a series of periodic fast edges. A delay device receives the fast-edge compressed signal and delays the fast-edge signal to create a delayed fast-edge signal. A combining device receives the original fast-edge compressed signal and the delayed fast-edge compressed signal to generate an output signal including a series of pulses having a width determined by the delay of the delayed signal. In one embodiment, the delay device is a shorted transmission line stub having a length selectively set by a series of MEM devices. In another embodiment, the delay device is an NLTL variable time delay device that delays the fast-edge signal.
    Type: Application
    Filed: January 19, 2005
    Publication date: July 20, 2006
    Applicant: Northrop Grumman Corporation
    Inventors: Eric Mrozek, Flavia Fong, Mark Kintis