Patents by Inventor Florentino Rafael MURRIETA GUEVARA

Florentino Rafael MURRIETA GUEVARA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11896954
    Abstract: The present invention relates to a process for the manufacture of microporous carbon materials to perform selective separations of nitrogen in gas mixtures such as hydrogen sulfide, carbon dioxide, methane and C2, C3 and C4+ hydrocarbons, with high efficiency, shaped of microspheres or cylinders from copolymers of poly (vinylidene chloride-co-methyl acrylate) with density of 1.3 to 1.85 g/cm3 or poly (vinylidene chloride-co-vinyl chloride) with density of 1.3 to 1.85 g/cm3, using two stages. The first stage consists of a surface passivation of the material by chemical attack in a highly alkaline alcohol solution, with the aim of effecting a precarbonization on the surface of the copolymer that during the pyrolysis process is not deformed and gradually develops microporosity. The material of the first stage presents, in the layer, percentages between 55% to 85% carbon, between 5% to 20% oxygen, and between 10% to 40% chlorine.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: February 13, 2024
    Assignee: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Federico Jesus Jimenez Cruz, Jose Luis Garcia Gutierrez, Jose Francisco Gaspar Silva Sanchez, Liliana Alejandra Astudillo Lopez Lena, Fidencio Hernandez Perez, Alberto Cabrales Torres, Maria Del Carmen Martinez Guerrero, Marco Antonio Dominguez Aguilar, Arturo Trejo Rodriguez, Florentino Rafael Murrieta Guevara
  • Publication number: 20210308652
    Abstract: The present invention relates to a process for the manufacture of microporous carbon materials to perform selective separations of nitrogen in gas mixtures such as hydrogen sulfide, carbon dioxide, methane and C2, C3 and C4+ hydrocarbons, with high efficiency, shaped of microspheres or cylinders from copolymers of poly (vinylidene chloride-co-methyl acrylate) with density of 1.3 to 1.85 g/cm3 or poly (vinylidene chloride-co-vinyl chloride) with density of 1.3 to 1.85 g/cm3, using two stages. The first stage consists of a surface passivation of the material by chemical attack in a highly alkaline alcohol solution, with the aim of effecting a precarbonization on the surface of the copolymer that during the pyrolysis process is not deformed and gradually develops microporosity. The material of the first stage presents, in the layer, percentages between 55% to 85% carbon, between 5% to 20% oxygen, and between 10% to 40% chlorine.
    Type: Application
    Filed: June 17, 2021
    Publication date: October 7, 2021
    Inventors: FEDERICO JESUS JIMENEZ CRUZ, JOSE LUIS GARCIA GUTIERREZ, JOSE FRANCISCO GASPAR SILVA SANCHEZ, LILIANA ALEJANDRA ASTUDILLO LOPER LENA, FIDENCIO HERNANDEZ PEREZ, ALBERTO CABRALES TORRES, MARIA DEL CARMEN MARTINEZ GUERRERO, MARCO ANTONIO DOMINGUEZ AGUILAR, ARTURO TREJO RODRIGUEZ, FLORENTINO RAFAEL MURRIETA GUEVARA
  • Patent number: 11059027
    Abstract: The present invention relates to a process for the manufacture of microporous carbon materials to perform selective separations of nitrogen in gas mixtures such as hydrogen sulfide, carbon dioxide, methane and C2, C3 and C4+ hydrocarbons, with high efficiency, shaped of microspheres or cylinders from copolymers of poly (vinylidene chloride-co-methyl acrylate) with density of 1.3 to 1.85 g/cm3 or poly (vinylidene chloride-co-vinyl chloride) with density of 1.3 to 1.85 g/cm3, using two stages. The first stage consists of a surface passivation of the material by chemical attack in a highly alkaline alcohol solution, with the aim of effecting a precarbonization on the surface of the copolymer that during the pyrolysis process is not deformed and gradually develops microporosity. The material of the first stage presents, in the layer, percentages between 55% to 85% carbon, between 5% to 20% oxygen, and between 10% to 40% chlorine.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: July 13, 2021
    Assignee: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Federico Jesus Jimenez Cruz, Jose Luis Garcia Gutierrez, Jose Francisco Gaspar Silva Sanchez, Liliana Alejandra Astudillo Lopez Lena, Fidencio Hernandez Perez, Alberto Cabrales Torres, Maria del Carmen Martinez Guerrero, Marco Antonio Dominguez Aguilar, Arturo Trejo Rodriguez, Florentino Rafael Murrieta Guevara
  • Publication number: 20190099740
    Abstract: The present invention relates to a process for the manufacture of microporous carbon materials to perform selective separations of nitrogen in gas mixtures such as hydrogen sulfide, carbon dioxide, methane and C2, C3 and C4+ hydrocarbons, with high efficiency, shaped of microspheres or cylinders from copolymers of poly (vinylidene chloride-co-methyl acrylate) with density of 1.3 to 1.85 g/cm3 or poly (vinylidene chloride-co-vinyl chloride) with density of 1.3 to 1.85 g/cm3, using two stages. The first stage consists of a surface passivation of the material by chemical attack in a highly alkaline alcohol solution, with the aim of effecting a precarbonization on the surface of the copolymer that during the pyrolysis process is not deformed and gradually develops microporosity. The material of the first stage presents, in the layer, percentages between 55% to 85% carbon, between 5% to 20% oxygen, and between 10% to 40% chlorine.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 4, 2019
    Inventors: Federico Jesus JIMENEZ CRUZ, Jose Luis GARCIA GUTIERREZ, Jose Francisco Gaspar SILVA SANCHEZ, Liliana Alejandra ASTUDILLO LOPEZ LENA, Fidencio HERNANDEZ PEREZ, Alberto CABRALES TORRES, Maria del Carmen MARTINEZ GUERRERO, Marco Antonio DOMINGUEZ AGUILAR, Arturo TREJO RODRIGUEZ, Florentino Rafael MURRIETA GUEVARA
  • Patent number: 10065915
    Abstract: The present invention relates to the production of biodiesel and alkyl esters by the transesterification of triglyceride esters, with alcohols in heterogeneous phase in the presence of heterogeneous catalysts, with yields higher than 80%, at a temperature from 0 to 300° C., residence time from 20 minutes to 20 h, space velocity of 0.1 to 10 h?1, pressure of 25-100 kg/cm2 (24.5-98.07 bar), methanol/oil molar ratio of 10 to 40 and catalyst concentration of 0.001 to 20 weight % based on tri-, di- or monoglyceride. The method produces biodiesel and alkyl esters by transesterification of tri-, di- or mono-glycerides, from palm, jatropha, castor, soybean and sunflower oils, wherein the alcohoxyls R1O, R2O and R3O of the glycerides are C1 to C24 and a C1-C4 alcohol, such as methanol, in an alcohol:oil ratio from 3:1 to 50:1.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: September 4, 2018
    Assignee: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Federico Jesus Jimenez Cruz, Celia Marin Rosas, Luis Carlos Castaneda Lopez, Rogelio Hernandez Suarez, Javier Esteban Rodriguez Rodriguez, Maria del Carmen Martinez Guerrero, Florentino Rafael Murrieta Guevara, Alicia del Rayo Jaramillo Jacob
  • Patent number: 9999874
    Abstract: The present invention relates to heterogeneous acid catalysts comprising or consisting of mixed metal salts, of lithium and aluminum phosphates and sulfates, and combinations with metallic cations, such as magnesium, titanium, zinc, zirconium and gallium, to provide adequate Lewis acidity; organic or inorganic porosity promoters, such as polysaccharides; and agglomerates, such as clays, kaolin and metal oxides of the type MxOy, where; M=Al, Mg, Sr, Zr or Ti, and other metals of groups IA, IIA and IVB, x=1 or 2 and y=2 or 3, for the formation of particles. A process is disclosed for obtaining from the catalyst by the hydrolysis of aluminum lithium hydride with water and oxygenated solvent, such as an ether. The catalysts are used in batch reactor and continuous flow systems in reactions that require moderate Lewis acidity, such as refining, petrochemical and general chemistry, including the transesterification of glycerides to produce alkyl esters.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: June 19, 2018
    Assignee: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Federico Jesus Jimenez Cruz, Celia Marin Rosas, Luis Carlos Castaneda Lopez, Rogelio Hernandez Suarez, Javier Esteban Rodriguez Rodriguez, Maria del Carmen Martinez Guerrero, Florentino Rafael Murrieta Guevara, Alicia del Rayo Jaramillo Jacob
  • Publication number: 20170282163
    Abstract: The present invention relates to heterogeneous acid catalysts comprising or consisting of mixed metal salts, of lithium and aluminum phosphates and sulfates, and combinations with metallic cations, such as magnesium, titanium, zinc, zirconium and gallium, to provide adequate Lewis acidity; organic or inorganic porosity promoters, such as polysaccharides; and agglomerates, such as clays, kaolin and metal oxides of the type MxOy, where; M=Al, Mg, Sr, Zr or Ti, and other metals of groups IA, IIA and IVB, x=1 or 2 and y=2 or 3, for the formation of particles. A process is disclosed for obtaining from the catalyst by the hydrolysis of aluminum lithium hydride with water and oxygenated solvent, such as an ether. The catalysts are used in batch reactor and continuous flow systems in reactions that require moderate Lewis acidity, such as refining, petrochemical and general chemistry, including the transesterification of glycerides to produce alkyl esters.
    Type: Application
    Filed: March 30, 2017
    Publication date: October 5, 2017
    Inventors: Federico Jesus JIMENEZ CRUZ, Celia MARIN ROSAS, Luis Carlos CASTANEDA LOPEZ, Rogelio HERNANDEZ SUAREZ, Javier Esteban RODRIGUEZ RODRIGUEZ, Maria del Carmen MARTINEZ GUERRERO, Florentino Rafael MURRIETA GUEVARA, Alicia del Rayo JARAMILLO JACOB
  • Publication number: 20170283723
    Abstract: The present invention relates to the production of biodiesel and alkyl esters by the transesterification of triglyceride esters, with alcohols in heterogeneous phase in the presence of heterogeneous catalysts, with yields higher than 80%, at a temperature from 0 to 300° C., residence time from 20 minutes to 20 h, space velocity of 0.1 to 10 h?1, pressure of 25-100 kg/cm2 (24.5-98.07 bar), methanol/oil molar ratio of 10 to 40 and catalyst concentration of 0.001 to 20 weight % based on tri-, di- or monoglyceride. The method produces biodiesel and alkyl esters by transesterification of tri-, di- or mono-glycerides, from palm, jatropha, castor, soybean and sunflower oils, wherein the alcohoxyls R1O, R2O and R3O of the glycerides are C1 to C24 and a C1-C4 alcohol, such as methanol, in an alcohol:oil ratio from 3:1 to 50:1.
    Type: Application
    Filed: March 30, 2017
    Publication date: October 5, 2017
    Inventors: Federico Jesus JIMENEZ CRUZ, Celia MARIN ROSAS, Luis Carlos CASTANEDA LOPEZ, Rogelio HERNANDEZ SUAREZ, Javier Esteban RODRIGUEZ RODRIGUEZ, Maria del Carmen MARTINEZ GUERRERO, Florentino Rafael MURRIETA GUEVARA, Alicia del Rayo JARAMILLO JACOB