Patents by Inventor Florian Bode

Florian Bode has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10738763
    Abstract: A method for controlling an active power output in a wind farm comprises inputting a setpoint of the active power into a ramp and limiting unit to determine an internal active power setpoint. Inputting the internal active power setpoint into a distributing unit configured to calculate a modeled active power setpoint of the wind farm. Determine by a subtraction element, a control difference that is a difference between the modeled active power setpoint and an actual value of the active power output of the wind farm. Determine a controller setpoint variable and calculating an overall setpoint variable from the controller setpoint variable and the feed-forward control variable. Splitting the overall setpoint variable for models of the wind turbines and determining using the wind turbine models the modeled active power setpoint of respective wind turbines depending on a portion of the active power setpoint.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: August 11, 2020
    Assignee: Nordex Energy GmbH
    Inventors: Florian Bode, Detlef Drossel
  • Patent number: 10557457
    Abstract: A method for controlling an active power in a wind farm comprises inputting an active power setpoint value into the wind farm model. Splitting the active power setpoint value of the wind farm among models of the wind turbines. Determining a modeled active power setpoint value of the wind farm as a sum of modeled active power setpoint values of the wind farm model. Determining a system deviation as a difference between the modeled active power setpoint value and an actual value of the active power output of the wind farm. Inputting the system deviation into a power controller which outputs a controller manipulated variable. Determining a feedforward controller manipulated variable independently of operating states of the wind turbines of the wind farm or the active power. Determining an overall manipulated variable as the sum of the freeforward controller manipulated variable (uff) and the controller manipulated variable.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: February 11, 2020
    Assignee: Nordex Engery GmbH
    Inventors: Detlef Drossel, Florian Bode
  • Patent number: 10480488
    Abstract: A wind turbine having a rotor, which has at least one rotor blade adjustable about its longitudinal axis via a pitch control, and a generator, driven by the rotor, having a speed regulator, which takes a control difference in the rotational speed and generates a control variable for the pitch control, and a generator regulator, which takes a power conductance and determines a rotational speed setpoint and a power setpoint, wherein a pilot control is provided that uses an inverse controlled system to determine a control variable for the pitch control, the inverse controlled system determining a power torque (MP) from the rotational speed setpoint and the power setpoint and also an acceleration torque (MB) from the change in the rotational speed setpoint over time and outputting the control variable for the pitch control as an output variable that provides pilot control for the output variable from the speed regulator.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: November 19, 2019
    Assignee: Nordex Energy GmbH
    Inventors: Detlef Drossel, Florian Bode
  • Patent number: 10393092
    Abstract: A method for controlling an active power in a wind farm having at least two wind turbines that supply active power comprises inputting a setpoint value for the active power of the wind farm into a wind farm model. The wind farm model outputs a modeled active power setpoint value. A system deviation is determined and input into a power controller, which outputs a controller manipulated variable. A feedforward control manipulated variable is determined independently of states of the wind farm or the active power. An overall manipulated variable is determined for the wind farm as the sum of the controller manipulated variable and the feedforward control manipulated variable. A correction value is determined based on the difference between the actual value of the active power and the modeled active power setpoint value and input into the wind farm model.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: August 27, 2019
    Assignee: Nordex Energy GmbH
    Inventors: Detlef Drossel, Florian Bode
  • Publication number: 20190010926
    Abstract: A method for controlling an active power output in a wind farm comprises inputting a setpoint of the active power into a ramp and limiting unit to determine an internal active power setpoint. Inputting the internal active power setpoint into a distributing unit configured to calculate a modeled active power setpoint of the wind farm. Determine by a subtraction element, a control difference that is a difference between the modeled active power setpoint and an actual value of the active power output of the wind farm. Determine a controller setpoint variable and calculating an overall setpoint variable from the controller setpoint variable and the feed-forward control variable. Splitting the overall setpoint variable for models of the wind turbines and determining using the wind turbine models the modeled active power setpoint of respective wind turbines depending on a portion of the active power setpoint.
    Type: Application
    Filed: July 10, 2018
    Publication date: January 10, 2019
    Applicant: Nordex Engergy GmbH
    Inventors: Florian Bode, Detlef Drossel
  • Publication number: 20180258913
    Abstract: A method for controlling an active power in a wind farm having at least two wind turbines that supply active power comprises inputting a setpoint value for the active power of the wind farm into a wind farm model. The wind farm model outputs a modeled active power setpoint value. A system deviation is determined and input into a power controller, which outputs a controller manipulated variable. A feedforward control manipulated variable is determined independently of states of the wind farm or the active power. An overall manipulated variable is determined for the wind farm as the sum of the controller manipulated variable and the feedforward control manipulated variable. A correction value is determined based on the difference between the actual value of the active power and the modeled active power setpoint value and input into the wind farm model.
    Type: Application
    Filed: March 13, 2018
    Publication date: September 13, 2018
    Applicant: Nordex Energy GmbH
    Inventors: Detlef Drossel, Florian Bode
  • Publication number: 20180258914
    Abstract: A method for controlling an active power in a wind farm comprises inputting an active power setpoint value into the wind farm model. Splitting the active power setpoint value of the wind farm among models of the wind turbines. Determining a modeled active power setpoint value of the wind farm as a sum of modeled active power setpoint values of the wind farm model. Determining a system deviation as a difference between the modeled active power setpoint value and an actual value of the active power output of the wind farm. Inputting the system deviation into a power controller which outputs a controller manipulated variable. Determining a feedforward controller manipulated variable independently of operating states of the wind turbines of the wind farm or the active power. Determining an overall manipulated variable as the sum of the freeforward controller manipulated variable (uff) and the controller manipulated variable.
    Type: Application
    Filed: March 13, 2018
    Publication date: September 13, 2018
    Applicant: Nordex Energy GmbH
    Inventors: Detlef Drossel, Florian Bode
  • Publication number: 20180138708
    Abstract: A method is for damping electromechanical oscillations on a power system by injecting reactive power generated by one or more wind turbines. A reactive power controller is adapted to determine a reference reactive power value depending on an actual system voltage. The method includes: measuring oscillation data, filtering the measured oscillation data to remove a steady state offset, providing a gain and a phase shift to the filtered data to compensate a gain in the reference reactive power value caused by the reactive power controller in response to electromechanical oscillations, and a delay in the reference reactive power value caused by the reactive power controller, and to generate corrected oscillation data, and determining a reactive power setpoint to be injected into the power system by the wind turbines based on the reference reactive power value and the corrected oscillation data, wherein the damping is continuously applied to the oscillation data.
    Type: Application
    Filed: November 9, 2017
    Publication date: May 17, 2018
    Inventors: Simon De Rijcke, Florian Bode
  • Publication number: 20170107973
    Abstract: A wind turbine having a rotor, which has at least one rotor blade adjustable about its longitudinal axis via a pitch control, and a generator, driven by the rotor, having a speed regulator, which takes a control difference in the rotational speed and generates a control variable for the pitch control, and a generator regulator, which takes a power conductance and determines a rotational speed setpoint and a power setpoint, wherein a pilot control is provided that uses an inverse controlled system to determine a control variable for the pitch control, the inverse controlled system determining a power torque (MP) from the rotational speed setpoint and the power setpoint and also an acceleration torque (MB) from the change in the rotational speed setpoint over time and outputting the control variable for the pitch control as an output variable that provides pilot control for the output variable from the speed regulator.
    Type: Application
    Filed: October 14, 2016
    Publication date: April 20, 2017
    Inventors: Detlef Drossel, Florian Bode