Patents by Inventor Florian Gstrein

Florian Gstrein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190043731
    Abstract: Two-stage bake photoresists with releasable quenchers for fabricating back end of line (BEOL) interconnects are described. In an example, a photolyzable composition includes an acid-deprotectable photoresist material having substantial transparency at a wavelength, a photo-acid-generating (PAG) component having substantial transparency at the wavelength, and a base-generating component having substantial absorptivity at the wavelength.
    Type: Application
    Filed: April 8, 2016
    Publication date: February 7, 2019
    Inventors: Robert L. BRISTOL, Marie KRYSAK, James M. BLACKWELL, Florian GSTREIN, Kent N. FRASURE
  • Publication number: 20190013246
    Abstract: Aligned pitch-quartered patterning approaches for lithography edge placement error advanced rectification are described. For example, a method of fabricating a semiconductor structure includes forming a first patterned hardmask on a semiconductor substrate. A second hardmask layer is formed on the semiconductor substrate. A segregated di-block co-polymer is formed on the first patterned hardmask and on the second hardmask layer. Second polymer blocks are removed from the segregated di-block co-polymer. A second patterned hardmask is formed from the second hardmask layer and a plurality of semiconductor fins is formed in the semiconductor substrate using first polymer blocks as a mask. A first fin of the plurality of semiconductor fins is removed. Subsequent to removing the first fin, a second fin of the plurality of semiconductor fins is removed.
    Type: Application
    Filed: March 28, 2016
    Publication date: January 10, 2019
    Applicant: Intel Corporation
    Inventors: Charles H. WALLACE, Manish CHANDHOK, Paul A NYHUS, Eungnak HAN, Stephanie A. BOJARSKI, Florian GSTREIN, Gurpreet SINGH
  • Patent number: 10109583
    Abstract: Embodiments of the invention include an interconnect structure and methods of forming such structures. In an embodiment, the interconnect structure may include an interlayer dielectric (ILD) with a first hardmask layer over a top surface of the ILD. Certain embodiments include one or more first interconnect lines in the ILD and a first dielectric cap positioned above each of the first interconnect lines. For example a surface of the first dielectric cap may contact a top surface of the first hardmask layer. Embodiments may also include one or more second interconnect lines in the ILD arranged in an alternating pattern with the first inter-connect lines. In an embodiment, a second dielectric cap is formed over a top surface of each of the second interconnect lines. For example, a surface of the second dielectric cap contacts a top surface of the first hardmask layer.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: October 23, 2018
    Assignee: Intel Corporation
    Inventors: Robert L. Bristol, Manish Chandhok, Jasmeet S. Chawla, Florian Gstrein, Eungnak Han, Rami Hourani, Kevin Lin, Richard E. Schenker, Todd R. Younkin
  • Publication number: 20180219080
    Abstract: Techniques related to forming selective gate spacers for semiconductor devices and transistor structures and devices formed using such techniques are discussed. Such techniques include forming a blocking material on a semiconductor fin, disposing a gate having a different surface chemistry than the blocking material on a portion of the blocking material, forming a selective conformal layer on the gate but not on a portion of the blocking material, and removing exposed portions of the blocking material.
    Type: Application
    Filed: September 26, 2014
    Publication date: August 2, 2018
    Applicant: Intel Corporation
    Inventors: Scott B. CLENDENNING, Szuya S. LIAO, Florian GSTREIN, Rami HOURANI, Patricio E. ROMERO, Grant M. KLOSTER, Martin M. MITAN
  • Publication number: 20180174893
    Abstract: Techniques are disclosed for insulating or electrically isolating select vias within a given interconnect layer, so a conductive routing can skip over those select isolated vias to reach other vias or interconnects in that same layer. Such a via blocking layer may be selectively implemented in any number of locations within a given interconnect as needed. Techniques for forming the via blocking layer are also provided, including a first methodology that uses a sacrificial passivation layer to facilitate selective deposition of insulator material that form the via blocking layer, a second methodology that uses spin-coating of wet-recessible polymeric formulations to facilitate selective deposition of insulator material that form the via blocking layer, and a third methodology that uses spin-coating of nanoparticle formulations to facilitate selective deposition of insulator material that form the via blocking layer. Harmful etching processes typically associated with conformal deposition processes is avoided.
    Type: Application
    Filed: February 18, 2018
    Publication date: June 21, 2018
    Applicant: INTEL CORPORATION
    Inventors: RAMI HOURANI, MARIE KRYSAK, FLORIAN GSTREIN, RUTH A. BRAIN, MARK T. BOHR
  • Publication number: 20180130707
    Abstract: Bottom-up fill approaches for forming metal features of semiconductor structures, and the resulting structures, are described. In an example, a semiconductor structure includes a trench disposed in an inter-layer dielectric (ILD) layer. The trench has sidewalls, a bottom and a top. A U-shaped metal seed layer is disposed at the bottom of the trench and along the sidewalls of the trench but substantially below the top of the trench. A metal fill layer is disposed on the U-shaped metal seed layer and fills the trench to the top of the trench. The metal fill layer is in direct contact with dielectric material of the ILD layer along portions of the sidewalls of the trench above the U-shaped metal seed layer.
    Type: Application
    Filed: June 18, 2015
    Publication date: May 10, 2018
    Inventors: Scott B. CLENDENNING, Martin M. MITAN, Timothy E. GLASSMAN, Flavio GRIGGIO, Grant M. KLOSTER, Kent N. FRASURE, Florian GSTREIN, Rami HOURANI
  • Patent number: 9932671
    Abstract: Precursor and process design for photo-assisted metal atomic layer deposition (ALD) and chemical vapor deposition (CVD) is described. In an example, a method of fabricating a thin metal film involves introducing precursor molecules proximate to a surface on or above a substrate, each of the precursor molecules having one or more metal centers surrounded by ligands. The method also involves depositing a metal layer on the surface by dissociating the ligands from the precursor molecules using a photo-assisted process.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: April 3, 2018
    Assignee: Intel Corporation
    Inventors: James M. Blackwell, Patricio E. Romero, Scott B. Clendenning, Grant M. Kloster, Florian Gstrein, Harsono S. Simka, Paul A. Zimmerman, Robert L. Bristol
  • Publication number: 20180082942
    Abstract: A conductive route structure may be formed comprising a conductive trace and a conductive via, wherein the conductive via directly contacts the conductive trace. In one embodiment, the conductive route structure may be formed by forming a dielectric material layer on the conductive trace. A via opening may be formed through the dielectric material layer to expose a portion of the conductive trace and a blocking layer may be from only on the exposed portion of the conductive trace. A barrier line may be formed on sidewalls of the via opening and the blocking layer may thereafter be removed. A conductive via may then be formed within the via opening, wherein the conductive via directly contacts the conductive trace.
    Type: Application
    Filed: April 29, 2015
    Publication date: March 22, 2018
    Applicant: INTEL CORPORATION
    Inventors: Jasmeet S. Chawla, Rami Hourani, Mauro J. Kobrinsky, Florian Gstrein, Scott B. Clendenning, Jeanette M. Roberts
  • Patent number: 9899255
    Abstract: Techniques are disclosed for insulating or electrically isolating select vias within a given interconnect layer, so a conductive routing can skip over those select isolated vias to reach other vias or interconnects in that same layer. Such a via blocking layer may be selectively implemented in any number of locations within a given interconnect as needed. Techniques for forming the via blocking layer are also provided, including a first methodology that uses a sacrificial passivation layer to facilitate selective deposition of insulator material that form the via blocking layer, a second methodology that uses spin-coating of wet-recessible polymeric formulations to facilitate selective deposition of insulator material that form the via blocking layer, and a third methodology that uses spin-coating of nanoparticle formulations to facilitate selective deposition of insulator material that form the via blocking layer. Harmful etching processes typically associated with conformal deposition processes is avoided.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: February 20, 2018
    Assignee: INTEL CORPORATION
    Inventors: Rami Hourani, Marie Krysak, Florian Gstrein, Ruth A. Brain, Mark T. Bohr
  • Publication number: 20170330972
    Abstract: Methods of selectively depositing high-K gate dielectric on a semiconductor structure are disclosed. The method includes providing a semiconductor structure disposed above a semiconductor substrate. The semiconductor structure is disposed beside an isolation sidewall. A sacrificial blocking layer is then selectively deposited on the isolation sidewall and not on the semiconductor structure. Thereafter, a high-K gate dielectric is deposited on the semiconductor structure, but not on the sacrificial blocking layer. Properties of the sacrificial blocking layer prevent deposition of oxide material on its surface. A thermal treatment is then performed to remove the sacrificial blocking layer, thereby forming a high-K gate dielectric only on the semiconductor structure.
    Type: Application
    Filed: December 19, 2014
    Publication date: November 16, 2017
    Inventors: GRANT KLOSTER, SCOTT CLENDENNING, Rami HOURANI, SZUYA S. LIAO, PATRICIO E. ROMERO, FLORIAN GSTREIN
  • Publication number: 20170330794
    Abstract: Techniques are disclosed for insulating or electrically isolating select vias within a given interconnect layer, so a conductive routing can skip over those select isolated vias to reach other vias or interconnects in that same layer. Such a via blocking layer may be selectively implemented in any number of locations within a given interconnect as needed. Techniques for forming the via blocking layer are also provided, including a first methodology that uses a sacrificial passivation layer to facilitate selective deposition of insulator material that form the via blocking layer, a second methodology that uses spin-coating of wet-recessible polymeric formulations to facilitate selective deposition of insulator material that form the via blocking layer, and a third methodology that uses spin-coating of nanoparticle formulations to facilitate selective deposition of insulator material that form the via blocking layer. Harmful etching processes typically associated with conformal deposition processes is avoided.
    Type: Application
    Filed: December 23, 2014
    Publication date: November 16, 2017
    Applicant: INTEL CORPORATION
    Inventors: RAMI HOURANI, MARIE KRYSAK, FLORIAN GSTREIN, RUTH A. BRAIN, MARK T. BOHR
  • Patent number: 9793163
    Abstract: Subtractive self-aligned via and plug patterning for back end of line (BEOL) interconnects is described. In an example, an interconnect structure for an integrated circuit includes a first layer of the interconnect structure disposed above a substrate. The first layer includes a first grating of alternating metal lines and dielectric lines in a first direction. The dielectric lines have an uppermost surface higher than an uppermost surface of the metal lines. The interconnect structure further includes a second layer of the interconnect structure disposed above the first layer of the interconnect structure. The second layer includes a second grating of alternating metal lines and dielectric lines in a second direction, perpendicular to the first direction. The dielectric lines have a lowermost surface lower than a lowermost surface of the metal lines. The dielectric lines of the second grating overlap and contact, but are distinct from, the dielectric lines of the first grating.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: October 17, 2017
    Assignee: Intel Corporation
    Inventors: Robert L. Bristol, Florian Gstrein, Richard E. Schenker, Paul A. Nyhus, Charles H. Wallace, Hui Jae Yoo
  • Publication number: 20170263551
    Abstract: Embodiments of the invention include an interconnect structure and methods of forming such structures. In an embodiment, the interconnect structure may include an interlayer dielectric (ILD) with a first hardmask layer over a top surface of the ILD. Certain embodiments include one or more first interconnect lines in the ILD and a first dielectric cap positioned above each of the first interconnect lines. For example a surface of the first dielectric cap may contact a top surface of the first hardmask layer. Embodiments may also include one or more second interconnect lines in the ILD arranged in an alternating pattern with the first inter-connect lines. In an embodiment, a second dielectric cap is formed over a top surface of each of the second interconnect lines. For example, a surface of the second dielectric cap contacts a top surface of the first hardmask layer.
    Type: Application
    Filed: December 24, 2014
    Publication date: September 14, 2017
    Inventors: ROBERT L. BRISTOL, MANISH CHANDHOK, JASMEET S. CHAWLA, FLORIAN GSTREIN, EUNGNAK HAN, RAMI HOURANI, KEVIN LIN, RICHARD E. SCHENKER, TODD R. YOUNKIN
  • Patent number: 9754778
    Abstract: Embodiments of the present disclosure are directed towards metallization of a fluorocarbon-based dielectric material for interconnect applications. In one embodiment, an apparatus includes a semiconductor substrate, a device layer disposed on the semiconductor substrate, the device layer including one or more transistor devices, and an interconnect layer disposed on the device layer, the interconnect layer comprising a fluorocarbon-based dielectric material, where x represents a stoichiometric quantity of fluorine relative to carbon in the dielectric material, and one or more interconnect structures configured to route electrical signals to or from the one or more transistor devices, the one or more interconnect structures comprising cobalt (Co), or ruthenium (Ru), or combinations thereof. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: September 5, 2017
    Assignee: Intel Corporation
    Inventors: Florian Gstrein, David J. Michalak
  • Patent number: 9659869
    Abstract: Described herein are techniques structures related to forming barrier walls, capping, or alloys/compounds such as treating copper so that an alloy or compound is formed, to reduce electromigration (EM) and strengthen metal reliability which degrades as the length of the lines increases in integrated circuits.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: May 23, 2017
    Assignee: Intel Corporation
    Inventors: Christopher J Jezewski, Alan M Meyers, Kanwal Jit Singh, Tejaswi K Indukuri, James S Clarke, Florian Gstrein
  • Publication number: 20170058401
    Abstract: Precursor and process design for photo-assisted metal atomic layer deposition (ALD) and chemical vapor deposition (CVD) is described. In an example, a method of fabricating a thin metal film involves introducing precursor molecules proximate to a surface on or above a substrate, each of the precursor molecules having one or more metal centers surrounded by ligands. The method also involves depositing a metal layer on the surface by dissociating the ligands from the precursor molecules using a photo-assisted process.
    Type: Application
    Filed: March 27, 2014
    Publication date: March 2, 2017
    Inventors: James M. BLACKWELL, Patricio E. ROMERO, Scott B. CLENDENNING, Grant M. KLOSTER, Florian GSTREIN, Harsono S. SIMKA, Paul A. ZIMMERMAN, Robert L. BRISTOL
  • Patent number: 9583389
    Abstract: Selective area deposition of metal films by atomic layer deposition (ALD) and chemical vapor deposition (CVD) is described. In an example, a method of fabricating a metallization structure for an integrated circuit involves forming an exposed surface above a substrate, the exposed surface including regions of exposed dielectric material and regions of exposed metal. The method also involves forming, using a selective metal deposition process, a metal layer on the regions of exposed metal without forming the metal layer on the regions of exposed dielectric material.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: February 28, 2017
    Assignee: Intel Corporation
    Inventors: Patricio E. Romero, Scott B. Clendenning, Jeanette M. Roberts, Florian Gstrein
  • Patent number: 9530733
    Abstract: A method of an aspect includes forming a first thicker layer of a first material over a first region having a first surface material by separately forming each of a first plurality of thinner layers by selective chemical reaction. The method also includes limiting encroachment of each of the first plurality of thinner layers over a second region that is adjacent to the first region. A second thicker layer of a second material is formed over the second region having a second surface material that is different than the first surface material.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: December 27, 2016
    Assignee: Intel Corporation
    Inventors: Robert L. Bristol, James M. Blackwell, Scott B. Clendenning, Florian Gstrein, Eungnak Han, Grant M. Kloster, Jeanette M. Roberts, Patricio E. Romero, Rami Hourani
  • Patent number: 9514983
    Abstract: A metal interconnect comprising cobalt and method of forming a metal interconnect comprising cobalt are described. In an embodiment, a metal interconnect comprising cobalt includes a dielectric layer disposed on a substrate, an opening formed in the dielectric layer such that the substrate is exposed. The embodiment further includes a seed layer disposed over the substrate and a fill material comprising cobalt formed within the opening and on a surface of the seed layer.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: December 6, 2016
    Assignee: Intel Corporation
    Inventors: Christopher J. Jezewski, James S. Clarke, Tejaswi K. Indukuri, Florian Gstrein, Daniel J. Zierath
  • Publication number: 20160197011
    Abstract: Subtractive self-aligned via and plug patterning for back end of line (BEOL) interconnects is described. In an example, an interconnect structure for an integrated circuit includes a first layer of the interconnect structure disposed above a substrate. The first layer includes a first grating of alternating metal lines and dielectric lines in a first direction. The dielectric lines have an uppermost surface higher than an uppermost surface of the metal lines. The interconnect structure further includes a second layer of the interconnect structure disposed above the first layer of the interconnect structure. The second layer includes a second grating of alternating metal lines and dielectric lines in a second direction, perpendicular to the first direction. The dielectric lines have a lowermost surface lower than a lowermost surface of the metal lines. The dielectric lines of the second grating overlap and contact, but are distinct from, the dielectric lines of the first grating.
    Type: Application
    Filed: September 27, 2013
    Publication date: July 7, 2016
    Inventors: ROBERT L. BRISTOL, FLORIAN GSTREIN, RICHARD E. SCHENKER, PAUL A. NYHUS, CHARLES H. WALLACE, HUI JAE YOO