Patents by Inventor Florian HELBING

Florian HELBING has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11709214
    Abstract: A temperature-control system for an NMR magnet system. A permanent magnet arrangement (1) with a central air gap (2) generates a homogeneous static magnetic field inside the air gap. A probehead (3) transmits RF pulses and receives RF signals from a test sample (0). An H0 coil changes the amplitude of the static magnetic field. A shim system (4) in the air gap further homogenizes the magnetic field. A first insulation chamber (5) surrounds and thermally shields the permanent magnet arrangement and includes an arrangement (6) controlling a temperature T1 of the first insulation chamber. The shim system, the H0 coil and the NMR probehead are arranged outside the first insulation chamber in the air gap. A heat-conducting body (7) is arranged between the shim system and the H0 coil on one side and the permanent magnet arrangement on the other, thereby enhancing field stability and suppressing drift.
    Type: Grant
    Filed: February 17, 2022
    Date of Patent: July 25, 2023
    Assignee: BRUKER SWITZERLAND AG
    Inventors: Nicolas Freytag, Florian Helbing, Roger Meister, Michele Zaffalon
  • Publication number: 20220171004
    Abstract: A temperature-control system for an NMR magnet system. A permanent magnet arrangement (1) with a central air gap (2) generates a homogeneous static magnetic field inside the air gap. A probehead (3) transmits RF pulses and receives RF signals from a test sample (0). An H0 coil changes the amplitude of the static magnetic field. A shim system (4) in the air gap further homogenizes the magnetic field. A first insulation chamber (5) surrounds and thermally shields the permanent magnet arrangement and includes an arrangement (6) controlling a temperature Ti of the first insulation chamber. The shim system, the H0 coil and the NMR probehead are arranged outside the first insulation chamber in the air gap. A heat-conducting body (7) is arranged between the shim system and the H0 coil on one side and the permanent magnet arrangement on the other, thereby enhancing field stability and suppressing drift.
    Type: Application
    Filed: February 17, 2022
    Publication date: June 2, 2022
    Inventors: Nicolas FREYTAG, Florian HELBING, Roger MEISTER, Michele ZAFFALON
  • Patent number: 10459044
    Abstract: A method for operating an NMR probehead (10) with an MAS stator (11) receiving a circular-cylindrical hollow MAS rotor (13) with an outer jacket. The MAS rotor is mounted on pressurized gas in a measuring position within the MAS stator via a gas supply device with a bearing nozzle (12?) and rotates about the cylinder axis of the MAS rotor at a rotation frequency f?30 kHz. During a measurement, a temperature control gas is blown by a temperature control nozzle (12) onto the outer jacket of the rotor at an angle ?<90° with respect to the longitudinal axis of the cylinder-symmetrical rotor. The flow speed of the temperature control gas corresponds in the nozzle cross section to at least half the circumferential speed of the outer jacket of the rotating rotor and to at most the speed of sound in the temperature control gas.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: October 29, 2019
    Assignee: BRUKER BIOSPIN GMBH
    Inventors: David Osen, Armin Purea, Benno Knott, Fabian Kuehler, Florian Helbing, Alia Hassan, Jevgeni Guidoulianov, Nicolas Freytag
  • Publication number: 20180088190
    Abstract: A method for operating an NMR probehead (10) with an MAS stator (11) receiving a circular-cylindrical hollow MAS rotor (13) with an outer jacket. The MAS rotor is mounted on pressurized gas in a measuring position within the MAS stator via a gas supply device with a bearing nozzle (12?) and rotates about the cylinder axis of the MAS rotor at a rotation frequency f?30 kHz. During a measurement, a temperature control gas is blown by a temperature control nozzle (12) onto the outer jacket of the rotor at an angle ?<90° with respect to the longitudinal axis of the cylinder-symmetrical rotor. The flow speed of the temperature control gas corresponds in the nozzle cross section to at least half the circumferential speed of the outer jacket of the rotating rotor and to at most the speed of sound in the temperature control gas.
    Type: Application
    Filed: September 28, 2017
    Publication date: March 29, 2018
    Inventors: David OSEN, Armin PUREA, Benno KNOTT, Fabian KUEHLER, Florian HELBING, Alia HASSAN, Jevgeni GUIDOULIANOV, Nicolas FREYTAG