Patents by Inventor Florian Pschenitzka

Florian Pschenitzka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110285019
    Abstract: A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates.
    Type: Application
    Filed: December 15, 2010
    Publication date: November 24, 2011
    Applicant: Cambrios Technologies Corporation
    Inventors: Jonathan S. Alden, Haixia Dai, Michael R. Knapp, Shuo Na, Hash Pakbaz, Florian Pschenitzka, Xina Quan, Michael A. Spaid, Adrian Winoto, Jeffrey Wolk
  • Patent number: 8049333
    Abstract: A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: November 1, 2011
    Assignee: Cambrios Technologies Corporation
    Inventors: Jonathan S. Alden, Haixia Dai, Michael R. Knapp, Shuo Na, Hash Pakbaz, Florian Pschenitzka, Xina Quan, Michael A. Spaid, Adrian Winoto, Jeffrey Wolk
  • Patent number: 8018563
    Abstract: Composite transparent conductors are described, which comprise a primary conductive medium based on metal nanowires and a secondary conductive medium based on a continuous conductive film.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: September 13, 2011
    Assignee: Cambrios Technologies Corporation
    Inventors: David Jones, Florian Pschenitzka, Xina Quan, Michael A. Spaid, Jeffrey Wolk
  • Patent number: 8018568
    Abstract: A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires that may be embedded in a matrix. The conductive layer is optically clear, patternable and is suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: September 13, 2011
    Assignee: Cambrios Technologies Corporation
    Inventors: Pierre-Marc Allemand, Haixia Dai, Shuo Na, Hash Pakbaz, Florian Pschenitzka, Xina Quan, Jelena Sepa, Michael A. Spaid, Jeffrey Wolk
  • Publication number: 20110163403
    Abstract: The present disclosure relates to modifications to nanostructure based transparent conductors to achieve increased haze/light-scattering with different and tunable degrees of scattering, different materials, and different microstructures and nanostructures.
    Type: Application
    Filed: December 3, 2010
    Publication date: July 7, 2011
    Applicant: Cambrios Technologies Corporation
    Inventors: Rimple Bhatia, Hash Pakbaz, Jelena Sepa, Teresa Ramos, Florian Pschenitzka, Michael A. Spaid, Karl Pichler
  • Publication number: 20110088770
    Abstract: A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires that may be embedded in a matrix. The conductive layer is optically clear, patternable and is suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.
    Type: Application
    Filed: October 15, 2010
    Publication date: April 21, 2011
    Applicant: Cambrios Technologies Corporation
    Inventors: Pierre-Marc Allemand, Haixia Dai, Shuo Na, Hash Pakbaz, Florian Pschenitzka, Xina Quan, Jelena Sepa, Michael A. Spaid
  • Patent number: 7902639
    Abstract: Improved methods and articles providing conformal coatings for a variety of devices including electronic, semiconductor, and liquid crystal display devices. Peptide formulations which bind to nanoparticles and substrates, including substrates with trenches and vias, to provide conformal coverage as a seed layer. The seed layer can be further enhanced with use of metallic films deposited on the seed layer. Seed layers can be characterized by AFM measurements and improved seed layers provide for better enhancement layers including lower resistivity in the enhancement layer. Peptides can be identified by phage display.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: March 8, 2011
    Assignee: Siluria Technologies, Inc.
    Inventors: Philip E. Garrou, Michael R. Knapp, Hash Pakbaz, Florian Pschenitzka, Xina Quan, Michael A. Spaid
  • Publication number: 20110042126
    Abstract: The present disclosure is directed to a transparent conductor for use in touch panel devices having a plurality of nanostructures therein that provides reliable output based on user touch or pen input. To determine if a touch panel is reliable, there is disclosed a method of measuring voltages across the transparent conductor when it is touched. These measured voltages are converted into contact resistances, which are statistically analyzed. A median contact resistance is determined based on the converted contact resistances. The remaining set of converted contact resistances are analyzed to determine if they are within acceptable limits. Acceptable limits may include most of the contact resistances falling within a range, none of the contact resistances exceeding an upper limit, and a difference in contact resistances converted for different users or pens does not exceed a maximum variability.
    Type: Application
    Filed: August 24, 2010
    Publication date: February 24, 2011
    Applicant: CAMBRIOS TECHNOLOGIES CORPORATION
    Inventors: Michael Spaid, Florian Pschenitzka
  • Publication number: 20100307792
    Abstract: Reliable and durable conductive films formed of conductive nanostructures are described. The conductive films show substantially constant sheet resistance following prolonged and intense light exposure.
    Type: Application
    Filed: May 4, 2010
    Publication date: December 9, 2010
    Applicant: CAMBRIOS TECHNOLOGIES CORPORATION
    Inventors: Pierre-Marc Allemand, Florian Pschenitzka, Teresa Ramos, Jelena Sepa
  • Publication number: 20100243295
    Abstract: A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires that may be embedded in a matrix. The conductive layer is optically clear, patternable and is suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.
    Type: Application
    Filed: February 24, 2010
    Publication date: September 30, 2010
    Applicant: CAMBRIOS TECHNOLOGIES CORPORATION
    Inventors: Pierre-Marc Allemand, Haixia Dai, Shuo Na, Hash Pakbaz, Florian Pschenitzka, Xina Quan, Jelena Sepa, Michael A. Spaid, Jeffrey Wolk
  • Patent number: 7710365
    Abstract: One embodiment of this invention pertains to a high throughput screening technique to identify current leakage in matrix-structured electronic devices. Because elements that are likely to develop a short have relatively high leakage current at zero operation hours, by identifying elements with the relatively high leakage current, the electronic devices that are more likely to later develop a short can be differentiated. The screening technique includes performing the following actions: selecting one of multiple first lines; applying a first voltage to the selected first line; applying a second voltage to the one or more of the first lines that are not selected; floating the multiple second lines; and measuring the voltages on the second lines, either sequentially one line at a time or measuring all the lines at the same time.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: May 4, 2010
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Franky So, Florian Pschenitzka, Egbert Hoefling
  • Patent number: 7586245
    Abstract: An apparatus such as a light source is disclosed which has an OLED device and a microstructured film disposed on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The microstructured film contains features which diffuse light emitted by said OLED device and increase the luminance of the device.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: September 8, 2009
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Lukas Haenichen, Florian Pschenitzka
  • Publication number: 20080286447
    Abstract: A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates.
    Type: Application
    Filed: April 4, 2008
    Publication date: November 20, 2008
    Applicant: Cambrios Technologies Corporation
    Inventors: Jonathan S. Alden, Haixia Dai, Michael R. Knapp, Shuo Na, Hash Pakbaz, Florian Pschenitzka, Xina Quan, Michael A. Spaid, Adrian Winoto, Jeffrey Wolk
  • Publication number: 20080283799
    Abstract: A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates.
    Type: Application
    Filed: April 4, 2008
    Publication date: November 20, 2008
    Applicant: CAMBRIOS TECHNOLOGIES CORPORATION
    Inventors: Jonathan S. Alden, Haixia Dai, Michael R. Knapp, Shuo Na, Hash Pakbaz, Florian Pschenitzka, Xina Quan, Michael A. Spaid, Adrian Winoto, Jeffrey Wolk
  • Publication number: 20080259262
    Abstract: Composite transparent conductors are described, which comprise a primary conductive medium based on metal nanowires and a secondary conductive medium based on a continuous conductive film.
    Type: Application
    Filed: April 18, 2008
    Publication date: October 23, 2008
    Applicant: Cambrios Technologies Corporation
    Inventors: David Jones, Florian Pschenitzka, Xina Quan, Michael A. Spaid, Jeffrey Wolk
  • Publication number: 20080143906
    Abstract: A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires that may be embedded in a matrix. The conductive layer is optically clear, patternable and is suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.
    Type: Application
    Filed: October 12, 2007
    Publication date: June 19, 2008
    Applicant: CAMBRIOS TECHNOLOGIES CORPORATION
    Inventors: Pierre-Marc Allemand, Haixia Dai, Shuo Na, Hash Pakbaz, Florian Pschenitzka, Xina Quan, Jelena Sepa, Michael A. Spaid
  • Publication number: 20080088542
    Abstract: One embodiment of this invention pertains to a high throughput screening technique to identify current leakage in matrix-structured electronic devices. Because elements that are likely to develop a short have relatively high leakage current at zero operation hours, by identifying elements with the relatively high leakage current, the electronic devices that are more likely to later develop a short can be differentiated. The screening technique includes performing the following actions: selecting one of multiple first lines; applying a first voltage to the selected first line; applying a second voltage to the one or more of the first lines that are not selected; floating the multiple second lines; and measuring the voltages on the second lines, either sequentially one line at a time or measuring all the lines at the same time.
    Type: Application
    Filed: December 26, 2006
    Publication date: April 17, 2008
    Inventors: Franky So, Florian Pschenitzka, Egbert Hoeflling
  • Patent number: 7242141
    Abstract: An embodiment of the present invention pertains to an electroluminescent lighting device for area illumination. The lighting device is fault tolerant due, in part, to the patterning of one or both of the electrodes into strips, and each of one or more of these strips has a fuse formed on it. The fuses are integrated on the substrate. By using the integrated fuses, the number of external contacts that are used is minimized. The fuse material is deposited using one of the deposition techniques that is used to deposit the thin layers of the electroluminescent lighting device.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: July 10, 2007
    Assignee: Osram Opto Semiconductor GmbH
    Inventor: Florian Pschenitzka
  • Publication number: 20070074316
    Abstract: A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates.
    Type: Application
    Filed: August 14, 2006
    Publication date: March 29, 2007
    Applicant: Cambrios Technologies Corporation
    Inventors: Jonathan Alden, Haixia Dai, Michael Knapp, Shuo Na, Hash Pakbaz, Florian Pschenitzka, Xina Quan, Michael Spaid, Adrian Winoto, Jeffrey Wolk
  • Publication number: 20070046161
    Abstract: An apparatus such as a light source is disclosed which has an OLED device and a microstructured film disposed on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The microstructured film contains features which diffuse light emitted by said OLED device and increase the luminance of the device.
    Type: Application
    Filed: August 29, 2005
    Publication date: March 1, 2007
    Inventors: Lukas Haenichen, Florian Pschenitzka