Patents by Inventor Floyd E. Farha

Floyd E. Farha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9458027
    Abstract: The invention involves the formation of a sulfided stable iron (II) compound from an iron (II) oxide and/or hydroxide and where the molar ratio of sulfur to iron (II) is greater than 1. Preferably these oxides and/or hydroxides are present as nanoparticles in the 5-10 nanometer range. It has been discovered that such particles can be formed at lower cost and with fewer impurities by using ferrous carbonate (FeCO3) from siderite as compared to known processes from various iron salts such as sulfates and chlorides.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: October 4, 2016
    Assignee: New Technology Ventures, Inc.
    Inventors: Floyd E. Farha, Veronica M. Irurzun
  • Publication number: 20150183656
    Abstract: The invention involves the formation of a sulfided stable iron (II) compound from an iron (II) oxide and/or hydroxide and where the molar ratio of sulfur to iron (II) is greater than 1. Preferably these oxides and/or hydroxides are present as nanoparticles in the 5-10 nanometer range. It has been discovered that such particles can be formed at lower cost and with fewer impurities by using ferrous carbonate (FeCO3) from siderite as compared to known processes from various iron salts such as sulfates and chlorides.
    Type: Application
    Filed: February 10, 2015
    Publication date: July 2, 2015
    Inventors: Floyd E. Farha, Veronica M. Irurzun
  • Patent number: 9023237
    Abstract: The invention involves the formation of a stable iron (II) oxide and/or hydroxide. Preferably these oxides and/or hydroxides are present as nanoparticles in the 5-10 nanometer range. It has been discovered that such particles can be formed at lower cost and with fewer impurities by using ferrous carbonate (FeCO3) from siderite as compared to known processes from various iron salts such as sulfates and chlorides. The novel nanoparticles are particularly adapted to removing sulfur compounds such as H2S from liquid and/or gaseous streams, such as hydrocarbon streams.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: May 5, 2015
    Assignee: New Technology Ventures, Inc.
    Inventors: Floyd E. Farha, Veronica M. Irurzun
  • Publication number: 20140374654
    Abstract: The invention involves the formation of a stable iron (II) oxide and/or hydroxide. Preferably these oxides and/or hydroxides are present as nanoparticles in the 5-10 nanometer range. It has been discovered that such particles can be formed at lower cost and with fewer impurities by using ferrous carbonate (FeCO3) from siderite as compared to known processes from various iron salts such as sulfates and chlorides. The novel nanoparticles are particularly adapted to removing sulfur compounds such as H2S from liquid and/or gaseous streams, such as hydrocarbon streams.
    Type: Application
    Filed: June 19, 2013
    Publication date: December 25, 2014
    Applicant: New Technology Ventures, Inc.
    Inventors: Floyd E. Farha, Veronica M. Irurzun
  • Patent number: 7943105
    Abstract: Finely divided ferrous carbonate absorbent, siderite granules or absorbent particles made by mixing, agglomerating and shaping finely powdered ferrous carbonate, preferably siderite, in combination with minor effective amounts of water or an optional binder, followed by drying, are used to treat and significantly reduce concentrations of hydrogen sulfide, carbonyl sulfide, organic disulfides, mercaptans and other sulfurous compounds and contaminants in gaseous and liquid fluid streams such as natural gas, light hydrocarbon streams, crude oil, acid gas mixtures, carbon dioxide gas and liquid streams, anaerobic gas, landfill gas, geothermal gases and liquids, and the like. Methods for absorbing sulfur compounds in a moist atmospheric environment and for regenerating the absorbent by contacting it with air and steam or, continuously, by mixing the feed stream with moist air are also disclosed.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: May 17, 2011
    Assignee: New Technology Ventures, Inc.
    Inventor: Floyd E. Farha
  • Patent number: 7931815
    Abstract: A method of using a sulfided iron reagent to remove oxygen from gaseous and liquid fluid streams such as natural gas, light hydrocarbon streams, crude oil, acid gas mixtures, carbon dioxide gas and liquid streams, anaerobic gas, landfill gas, geothermal gases and liquids, and the like is disclosed. In a preferred embodiment, the reagent is made by mixing, agglomerating and shaping finely powdered ferrous carbonate, preferably siderite which are used to remove oxygen from a hydrocarbon or carbon dioxide stream that also contains sulfur compounds such as hydrogen sulfide.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: April 26, 2011
    Assignee: New Technology Ventures, INc.
    Inventors: Floyd E. Farha, James A. Kane
  • Patent number: 7744841
    Abstract: Finely divided ferrous carbonate absorbent, siderite granules or absorbent particles made by mixing, agglomerating and shaping finely powdered ferrous carbonate, preferably siderite, in combination with minor effective amounts of water or an optional binder, followed by drying, are used to treat and significantly reduce concentrations of hydrogen sulfide, carbonyl sulfide, organic disulfides, mercaptans and other sulfurous compounds and contaminants in gaseous and liquid fluid streams such as natural gas, light hydrocarbon streams, crude oil, acid gas mixtures, carbon dioxide gas and liquid streams, anaerobic gas, landfill gas, geothermal gases and liquids, and the like.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: June 29, 2010
    Assignee: New Technology Ventures, Inc.
    Inventor: Floyd E. Farha
  • Publication number: 20100126346
    Abstract: A method of using a sulfided iron reagent to remove oxygen from gaseous and liquid fluid streams such as natural gas, light hydrocarbon streams, crude oil, acid gas mixtures, carbon dioxide gas and liquid streams, anaerobic gas, landfill gas, geothermal gases and liquids, and the like is disclosed. In a preferred embodiment, the reagent is made by mixing, agglomerating and shaping finely powdered ferrous carbonate, preferably siderite which are used to remove oxygen from a hydrocarbon or carbon dioxide stream that also contains sulfur compounds such as hydrogen sulfide.
    Type: Application
    Filed: October 30, 2007
    Publication date: May 27, 2010
    Inventors: Floyd E. Farha, James A. Kane
  • Publication number: 20090107333
    Abstract: A method of using a sulfided iron reagent to remove oxygen from gaseous and liquid fluid streams such as natural gas, light hydrocarbon streams, crude oil, acid gas mixtures, carbon dioxide gas and liquid streams, anaerobic gas, landfill gas, geothermal gases and liquids, and the like is disclosed. In a preferred embodiment, the reagent is made by mixing, agglomerating and shaping finely powdered ferrous carbonate, preferably siderite which are used to remove oxygen from a hydrocarbon or carbon dioxide stream that also contains sulfur compounds such as hydrogen sulfide.
    Type: Application
    Filed: October 30, 2007
    Publication date: April 30, 2009
    Inventors: Floyd E. Farha, James A. Kane
  • Patent number: 6752919
    Abstract: A process for the removal of trace metals from a hydrocarbon stream includes contacting the hydrocarbon stream with an absorbent material comprising antimony pentoxide supported on an absorbent substrate. The hydrocarbon product is then withdrawn from the absorbent material to provide a purified product in which 99.5 wt. % of the trace metal has been removed. Preparation of the antimony pentoxide-promoted absorbent entails treating a particulate porous substrate with an aqueous solution of antimony pentoxide. The absorbent substrate has an average particle size within the range of 1-5 mm and an average pore volume within the range of 0.7-0.85 cubic centimeters per gram. At least 80% of the surface area of the support is contained within the internal pore volume of the absorbent. The absorbent support is contacted with the antimony pentoxide solution.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: June 22, 2004
    Assignee: Chemical Products Industries, Inc.
    Inventors: Floyd E. Farha, Eugene C. Fendley, II
  • Publication number: 20040023018
    Abstract: A process for the removal of trace metals from a hydrocarbon stream includes contacting the hydrocarbon stream with an absorbent material comprising antimony pentoxide supported on an absorbent substrate. The hydrocarbon product is then withdrawn from the absorbent material to provide a purified product in which 99.5 wt. % of the trace metal has been removed. Preparation of the antimony pentoxide-promoted absorbent entails treating a particulate porous substrate with an aqueous solution of antimony pentoxide. The absorbent substrate has an average particle size within the range of 1-5 mm and an average pore volume within the range of 0.7-0.85 cubic centimeters per gram. At least 80% of the surface area of the support is contained within the internal pore volume of the absorbent. The absorbent support is contacted with the antimony pentoxide solution.
    Type: Application
    Filed: July 31, 2002
    Publication date: February 5, 2004
    Inventors: Floyd E. Farha, Eugene C. Fendley
  • Patent number: 5026796
    Abstract: Fine, pure, boehmite alumina crystallites are peptized, partially precipitated and phosphated, hardened, and dried to form a xerogel. The alumina can be impregnated with a chromium compound. The chromium-containing catalyst is activated by calcination. The activated catalyst can be used as a polymerization catalyst to polymerize mono-1-olefins.
    Type: Grant
    Filed: November 27, 1989
    Date of Patent: June 25, 1991
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Emory W. Pitzer, Floyd E. Farha, Jr.
  • Patent number: 4900704
    Abstract: Fine, pure, boehmite alumina crystallites are peptized, partially precipitated and phosphated, hardened, and dried to form a zerogel. The alumina can be impregnated with a chromium compound. The chromium-containing catalyst is activated by calcination. The activated catalyst can be used as a polymerization catalyst to polymerize mono-1-olefins.
    Type: Grant
    Filed: September 29, 1988
    Date of Patent: February 13, 1990
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Emory W. Pitzer, Floyd E. Farha, Jr.
  • Patent number: 4693991
    Abstract: A catalyst composition comprises (a) alumina, (b) zinc titanate, (c) at least one compound of molybdenum, (d) at least one compound of at least one of nickel and cobalt, and (e) at least one compound of rhenium. This catalyst composition is used for hydrotreating a liquid hydrocarbon-containing feed stream, which contains organic compounds of sulfur, nitrogen and oxygen under such conditions as to obtain a product having reduced levels of sulfur, nitrogen and oxygen. Preferably the hydrocarbon-containing feed stream contains cycloalkanes, which are at least partially reformed to aromatic compounds.
    Type: Grant
    Filed: October 16, 1986
    Date of Patent: September 15, 1987
    Assignee: Phillips Petroleum Company
    Inventors: Geir Bjornson, Douglas D. Klendworth, Lloyd E. Gardner, Floyd E. Farha, Jr.
  • Patent number: 4680351
    Abstract: A highly active catalyst suitable for the polymerization of olefins and its use are disclosed, said catalyst being prepared by(1) co-comminuting an aluminum halide; at least one electron donor; a Group IVB-VIB transition metal compound; and a support base selected from the group consisting of the Group IIA and IIIA salts and the salts of the multivalent metals of the first transition series with the exception of copper to produce a coground solid;(2) extracting said coground solid with an organic liquid; and(3) separating the solid from the liquid under such conditions that at least 5 weight percent of the aluminum in the coground solid is removed.
    Type: Grant
    Filed: October 10, 1986
    Date of Patent: July 14, 1987
    Assignee: Phillips Petroleum Company
    Inventors: Nemesio D. Miro, Floyd E. Farha, Charles E. Capshew
  • Patent number: 4655906
    Abstract: A catalyst composition comprises (a) alumina, (b) zinc titanate, (c) at least one compound of molybdenum, (d) at least one compound of at least one of nickel and cobalt, and (e) at least one compound of rhenium. This catalyst composition is used for hydrotreating a liquid hydrocarbon-containing feed stream, which contains organic compounds of sulfur, nitrogen and oxygen under such conditions as to obtain a product having reduced levels of sulfur, nitrogen and oxygen. Preferably the hydrocarbon-containing feed stream contains cycloalkanes, which are at least partially reformed to aromatic compounds.
    Type: Grant
    Filed: May 2, 1986
    Date of Patent: April 7, 1987
    Assignee: Phillips Petroleum Company
    Inventors: Geir Bjornson, Douglas D. Klendworth, Lloyd E. Gardner, Floyd E. Farha, Jr.
  • Patent number: 4636371
    Abstract: The removal of sulfur oxide (particularly sulfur dioxide) from a fluid stream, such as the tail gas from a sulfur process, is accomplished by contacting such fluid stream with a catalyst composition comprising zinc titanate and a promoter in the presence of a hydrogen donor.
    Type: Grant
    Filed: September 9, 1985
    Date of Patent: January 13, 1987
    Assignee: Phillips Petroleum Company
    Inventor: Floyd E. Farha, Jr.
  • Patent number: 4626519
    Abstract: A highly active catalyst suitable for the polymerization of olefins and its use are disclosed, said catalyst being prepared by(1) co-comminuting an aluminum halide; at least one electron donor; a Group IVB-VIB transition metal compound; and a support base selected from the group consisting of the Group IIA and IIIA salts and the salts of the multivalent metals of the first transition series with the exception of copper to produce a coground solid;(2) extracting said coground solid with an organic liquid; and(3) separating the solid from the liquid under such conditions that at least 5 weight percent of the aluminum in the coground solid is removed.
    Type: Grant
    Filed: September 6, 1985
    Date of Patent: December 2, 1986
    Assignee: Phillips Petroleum Company
    Inventors: Nemesio D. Miro, Floyd E. Farha, Charles E. Capshew
  • Patent number: 4511405
    Abstract: The formation of carbon on metals exposed to hydrocarbons in a thermal cracking process is reduced by contacting such metals with an antifoulant selected from the group consisting of tin, a combination of tin and antimony, a combination of germanium and antimony, a combination of tin and germanium and a combination of tin, antimony and germanium.
    Type: Grant
    Filed: May 27, 1983
    Date of Patent: April 16, 1985
    Inventors: Larry E. Reed, Randall A. Porter, Floyd E. Farha, Jr., Jack P. Guillory
  • Patent number: 4404087
    Abstract: The formation of carbon on metals exposed to hydrocarbons in a thermal cracking process is reduced by contacting such metals with an antifoulant selected from the group consisting of tin, a combination of tin and antimony, a combination of germanium and antimony, a combination of tin and germanium and a combination of tin, antimony and germanium.
    Type: Grant
    Filed: September 30, 1982
    Date of Patent: September 13, 1983
    Assignee: Phillips Petroleum Company
    Inventors: Larry E. Reed, Randall A. Porter, Floyd E. Farha, Jr., Jack P. Guillory