Patents by Inventor Forrest Grant Sedgwick

Forrest Grant Sedgwick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8809672
    Abstract: The present disclosure provides a catalyst-free growth mode of defect-free Gallium Arsenide (GaAs)-based nanoneedles on silicon (Si) substrates with a complementary metal-oxide-semiconductor (CMOS)-compatible growth temperature of around 400° C. Each nanoneedle has a sharp 2 to 5 nanometer (nm) tip, a 600 nm wide base and a 4 micrometer (?m) length. Thus, the disclosed nanoneedles are substantially hexagonal needle-like crystal structures that assume a 6° to 9° tapered shape. The 600 nm wide base allows the typical micro-fabrication processes, such as optical lithography, to be applied. Therefore, nanoneedles are an ideal platform for the integration of optoelectronic devices on Si substrates. A nanoneedle avalanche photodiode (APD) grown on silicon is presented in this disclosure as a device application example. The APD attains a high current gain of 265 with only 8V bias.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: August 19, 2014
    Assignee: The Regents of the University of California
    Inventors: Chih-Wei Chuang, Connie Chang-Hasnain, Forrest Grant Sedgwick, Wai Son Ko
  • Patent number: 8673680
    Abstract: The present disclosure provides a method for a catalyst-free growth mode of defect-free Gallium Arsenide (GaAs)-based nanoneedles on silicon (Si) substrates with a complementary metal-oxide-semiconductor (CMOS)-compatible growth temperature of around 400° C. Each nanoneedle has a sharp 2 to 5 nanometer (nm) tip, a 600 nm wide base and a 4 micrometer (?m) length. Thus, the disclosed nanoneedles are substantially hexagonal needle-like crystal structures that assume a 6° to 9° tapered shape. The 600 nm wide base allows the typical micro-fabrication processes, such as optical lithography, to be applied. Therefore, nanoneedles are an ideal platform for the integration of optoelectronic devices on Si substrates. A nanoneedle avalanche photodiode (APD) grown on silicon is presented in this disclosure as a device application example. The APD attains a high current gain of 265 with only 8V bias.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: March 18, 2014
    Assignee: The Regents of the University of California
    Inventors: Chih-Wei Chuang, Connie Chang-Hasnain, Forrest Grant Sedgwick, IV, Wai Son Ko
  • Publication number: 20110146771
    Abstract: The present disclosure provides a catalyst-free growth mode of defect-free Gallium Arsenide (GaAs)-based nanoneedles on silicon (Si) substrates with a complementary metal-oxide-semiconductor (CMOS)-compatible growth temperature of around 400° C. Each nanoneedle has a sharp 2 to 5 nanometer (nm) tip, a 600 nm wide base and a 4 micrometer (?m) length. Thus, the disclosed nanoneedles are substantially hexagonal needle-like crystal structures that assume a 6° to 9° tapered shape. The 600 nm wide base allows the typical micro-fabrication processes, such as optical lithography, to be applied. Therefore, nanoneedles are an ideal platform for the integration of optoelectronic devices on Si substrates. A nanoneedle avalanche photodiode (APD) grown on silicon is presented in this disclosure as a device application example. The APD attains a high current gain of 265 with only 8V bias.
    Type: Application
    Filed: May 27, 2010
    Publication date: June 23, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Chih-Wei Chuang, Connie Chang-Hasnain, Forrest Grant Sedgwick, Wai Son Ko