Patents by Inventor Forrest Hopkins
Forrest Hopkins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20080166033Abstract: A method, system and apparatus for processing a radiographic image of a scanned object is disclosed. A pixel offset correction is performed in integer format on the radiographic image using saturation arithmetic to produce an image in integer format with any negative corrected values clipped to a value of zero. The resulting pixels are converted to floating point format and the converted pixels are multiplied by a gain factor. Optionally the resulting pixels are recursively averaged with previous results. The resulting pixels are converted to integer format and the converted pixel values are clamped to a maximum value using saturation arithmetic. Non-functional pixel correction is performed in integer format and the resulting pixel values are clamped to a maximum value using saturation arithmetic. An optional processing path replaces the recursive average by a linear average. The resulting pixel values are optionally filtered to enhance features of interest.Type: ApplicationFiled: March 9, 2007Publication date: July 10, 2008Applicant: GENERAL ELECTRIC COMPANYInventors: Clifford Bueno, Elizabeth Dixon, Walter Dixon, Forrest Hopkins, Michael Hopple, Brian Lasiuk, Ronald McFarland, August Matula, Robert Mitchell, Kevin Moermond, Gregory Mohr
-
Patent number: 7215801Abstract: A method, system and apparatus for processing a radiographic image of a scanned object is disclosed. A pixel offset correction is performed in integer format on the radiographic image using saturation arithmetic to produce an image in integer format with any negative corrected values clipped to a value of zero. The resulting pixels are converted to floating point format and the converted pixels are multiplied by a gain factor. Optionally the resulting pixels are recursively averaged with previous results. The resulting pixels are converted to integer format and the converted pixel values are clamped to a maximum value using saturation arithmetic. Non-functional pixel correction is performed in integer format and the resulting pixel values are clamped to a maximum value using saturation arithmetic. An optional processing path replaces the recursive average by a linear average. The resulting pixel values are optionally filtered to enhance features of interest.Type: GrantFiled: June 5, 2003Date of Patent: May 8, 2007Assignee: General Electric CompanyInventors: Clifford Bueno, Elizabeth Dixon, Walter Dixon, Forrest Hopkins, Michael Hopple, Brian Lasiuk, Ronald McFarland, August Matula, Robert Mitchell, Jr., Kevin Moermond, Gregory Mohr
-
Publication number: 20070034805Abstract: A linear array detector (LAD) for scanning an object is provided. The detector includes a scintillator layer configured for generating a number of optical signals representative of a fraction of an incident X-ray beam passing through the object. The plane of the scintillator is parallel to the X-ray beam. The LAD further includes a two dimensional array of photo-conversion elements configured to receive several X-rays of the X-ray beams and configured to generate corresponding electrical signals. An arrangement of the photo-conversion elements is independent of the X-ray paths.Type: ApplicationFiled: September 12, 2006Publication date: February 15, 2007Inventors: Forrest Hopkins, Andrew Galish, William Ross
-
Publication number: 20060214109Abstract: A detector assembly including a radiation conversion layer directly coupled to a pixel array is provided. The radiation conversion layer is adapted to receive radiation passing through an object. The pixel array is adapted for receiving one of a plurality of signals representative of the radiation passing through the object or the corresponding optical signals from an optional intermediate light production layer and further configured for generating a corresponding image of the object.Type: ApplicationFiled: March 25, 2005Publication date: September 28, 2006Inventors: Clifford Bueno, Forrest Hopkins, Scott Zelakiewicz, Clarence Gordon
-
Publication number: 20060133563Abstract: An energy discrimination radiography system includes at least one radiation source configured to alternately irradiate a component with radiation characterized by at least two energy spectra, where the component has a number of constituents. At least one radiation detector is configured to receive radiation passing through the component and a computer is operationally coupled to the detector. The computer is configured to receive data corresponding to each of the energy spectra for a scan of the component, process the data to generate a multi-energy data set, and decompose the multi-energy data set to generate material characterization images in substantially real time. A method for inspecting the component includes irradiating the component, receiving a data stream of energy discriminated data, processing the energy discriminated data, to generate a multi-energy data set, and decomposing the multi-energy data set, to generate material characterization images in substantially real time.Type: ApplicationFiled: December 20, 2004Publication date: June 22, 2006Inventors: Forrest Hopkins, Walter Dixon, Clifford Bueno, Yanfeng Du, Gregory Mohr, Paul Fitzgerald, Thomas Birdwell
-
Publication number: 20060067471Abstract: A linear array detector (LAD) for scanning an object is provided. The detector includes a scintillator layer configured for generating a number of optical signals representative of a fraction of an incident X-ray beam passing through the object. The plane of the scintillator is parallel to the X-ray beam. The LAD further includes a two dimensional array of photo-conversion elements configured to receive several X-rays of the X-ray beams and configured to generate corresponding electrical signals. An arrangement of the photo-conversion elements is independent of the X-ray paths.Type: ApplicationFiled: September 30, 2004Publication date: March 30, 2006Inventors: Forrest Hopkins, Andrew Galish, William Ross
-
Publication number: 20060067461Abstract: A method for reconstructing image data from measured sinogram data acquired from a CT system is provided. The CT system is configured for industrial imaging. The method includes pre-processing the measured sinogram data. The pre-processing includes performing a beam hardening correction on the measured sinogram data and performing a detector point spread function (PSF) correction and a detector lag correction on the measured sinogram data. The pre-processed sinogram data is reconstructed to generate the image data.Type: ApplicationFiled: September 30, 2004Publication date: March 30, 2006Inventors: Zhye Yin, Jong Ye, Francis Little, Forrest Hopkins, Michael Gong, Yanfeng Du
-
Publication number: 20060065844Abstract: An imaging system for dynamically optimizing an image is provided. The imaging system includes a source of radiation, and a detector assembly configured to generate an image signal based on an incidence of radiation on a scintillator assembly. At least one or more properties of the generated image signal are determined from the incidence of radiation on the detector assembly. The one or more properties of the image signal may also be determined from one or more detector operational parameters. The imaging system also includes a detector adjustment circuitry that is configured to adjust the one or more detector operational parameters based on the generated image signal.Type: ApplicationFiled: September 30, 2004Publication date: March 30, 2006Inventors: Scott Zelakiewicz, Clifford Bueno, Gregory Mohr, Paul FitzGerald, Forrest Hopkins, Aaron Couture
-
Publication number: 20060002515Abstract: A system and method for forming x-rays. One exemplary system includes a target and electron emission subsystem with a plurality of electron sources. Each of the plurality of electron sources is configured to generate a plurality of discrete spots on the target from which x-rays are emitted. Another exemplary system includes a target, an electron emission subsystem with a plurality of electron sources, each of which generates at least one of the plurality of spots on the target, and a transient beam protection subsystem for protecting the electron emission subsystem from transient beam currents and material emissions from the target.Type: ApplicationFiled: February 1, 2005Publication date: January 5, 2006Inventors: William Huber, Colin Wilson, John Price, Peter Edic, Mark Vermilyea, Forrest Hopkins
-
Publication number: 20050185753Abstract: A method of correcting scatter includes obtaining a voxellized representation of a 3D image of an object from a plurality of projection data. A single scatter profile for the object is calculated using the voxellized representation of the 3D image of the object. A total scatter profile for the object is determined using the single scatter profile and an adjustment factor and the projection data is corrected using the total scatter profile to obtain a scatter corrected projection data. A beam hardening correction method includes simulating a number of attenuation data for an x-ray spectrum, at least one object material, and a detector spectral response. A function is fitted to the attenuation data to obtain an attenuation curve. A number of projection data for an object are corrected using the attenuation curve to obtain a number of beam hardening corrected projection data. A corrected image of the object is reconstructed from the beam hardening corrected image data.Type: ApplicationFiled: February 23, 2004Publication date: August 25, 2005Inventors: Yanfeng Du, Forrest Hopkins
-
Publication number: 20050031075Abstract: A system and method for ascertaining the identity of an object within an enclosed article. The system includes an acquisition subsystem utilizing a stationary radiation source and detector, a reconstruction subsystem, a computer-aided detection (CAD) subsystem, and a 2D/3D visualization subsystem. The detector may be an energy discriminating detector. The acquisition subsystem communicates view data to the reconstruction subsystem, which reconstructs it into image data and communicates it to the CAD subsystem. The CAD subsystem analyzes the image data to ascertain whether it contains any area of interest. Any such area of interest data is sent to the reconstruction subsystem for further reconstruction, using more rigorous algorithms and further analyzed by the CAD subsystem. Other information, such as risk variables or trace chemical detection information may be communicated to the CAD subsystem to be included in its analysis.Type: ApplicationFiled: December 22, 2003Publication date: February 10, 2005Inventors: Forrest Hopkins, Peter Edic, Samit Basu, Bruno De Man, James Leblanc, Xiaoye Wu, Deborah Walter, William Ross, Colin Wilson, Ricardo Avila, Robert Kaucic
-
Publication number: 20050031069Abstract: A system and method for ascertaining the identity of an object within an enclosed article. The system includes an acquisition subsystem, a reconstruction subsystem, a computer-aided detection (CAD) subsystem, and an alarm resolution subsystem. The acquisition subsystem communicates view data to the reconstruction subsystem, which reconstructs it into image data and communicates it to the CAD subsystem. The CAD subsystem analyzes the image data to ascertain whether it contains any area of interest. A feedback loop between the reconstruction and CAD subsystems allows for continued, more extensive analysis of the object. Other information, such as risk variables or trace chemical detection information may be communicated to the CAD subsystem to dynamically adjust the computational load of the analysis.Type: ApplicationFiled: December 18, 2003Publication date: February 10, 2005Inventors: Robert Kaucic, Ricardo Avila, Samit Basu, Forrest Hopkins
-
Publication number: 20040247167Abstract: A method, system and apparatus for processing a radiographic image of a scanned object is disclosed. A pixel offset correction is performed in integer format on the radiographic image using saturation arithmetic to produce an image in integer format with any negative corrected values clipped to a value of zero. The resulting pixels are converted to floating point format and the converted pixels are multiplied by a gain factor. Optionally the resulting pixels are recursively averaged with previous results. The resulting pixels are converted to integer format and the converted pixel values are clamped to a maximum value using saturation arithmetic. Non-functional pixel correction is performed in integer format and the resulting pixel values are clamped to a maximum value using saturation arithmetic. An optional processing path replaces the recursive average by a linear average. The resulting pixel values are optionally filtered to enhance features of interest.Type: ApplicationFiled: June 5, 2003Publication date: December 9, 2004Inventors: Clifford Bueno, Elizabeth Dixon, Walter Dixon, Forrest Hopkins, Michael Hopple, Brian Lasiuk, Ronald McFarland, August Matula, Robert Mitchell, Kevin Moermond, Gregory Mohr