Patents by Inventor Forrest Nelson Iandola
Forrest Nelson Iandola has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12267593Abstract: A system for automatically maintaining focus while tracking remote flying objects includes an interface and processor. The interface is configured to receive two or more images. The processor is configured to determine a bounding box for an object in the two or more images; determine an estimated position for the object in a future image; and determine an estimated focus setting and an estimated pointing direction for a lens system.Type: GrantFiled: February 10, 2023Date of Patent: April 1, 2025Assignee: Anduril Industries, Inc.Inventors: Brian Marcin Camacho, Calvin Michael Hareng, Corey Martin Hass, Forrest Nelson Iandola, Gokul Ganesh Subramanian, Nadav Ben-Haim, Adnan Esmail, Kevin Michael Christensen
-
Publication number: 20240419968Abstract: A model training and implementation pipeline trains models for individual embedded systems. The pipeline iterates through multiple models and estimates the performance of the models. During a model generation stage, the pipeline translates the description of the model together with the model parameters into an intermediate representation in a language that is compatible with a virtual machine. The intermediate representation is agnostic or independent to the configuration of the target platform. During a model performance estimation stage, the pipeline evaluates the performance of the models without training the models. Based on the analysis of the performance of the untrained models, a subset of models is selected. The selected models are then trained and the performance of the trained models are analyzed. Based on the analysis of the performance of the trained models, a single model is selected for deployment to the target platform.Type: ApplicationFiled: August 30, 2024Publication date: December 19, 2024Applicant: Tesla, Inc.Inventors: Harsimran Singh Sidhu, Paras Jagdish Jain, Daniel Paden Tomasello, Forrest Nelson Iandola
-
Publication number: 20240346816Abstract: An autonomous control system generates synthetic data that reflect simulated environments. Specifically, the synthetic data is a representation of sensor data of the simulated environment from the perspective of one or more sensors. The system generates synthetic data by introducing one or more simulated modifications to sensor data captured by the sensors or by simulating the sensor data for a virtual environment. The autonomous control system uses the synthetic data to train computer models for various detection and control algorithms. In general, this allows autonomous control systems to augment training data to improve performance of computer models, simulate scenarios that are not included in existing training data, and/or train computer models that remove unwanted effects or occlusions from sensor data of the environment.Type: ApplicationFiled: June 24, 2024Publication date: October 17, 2024Inventors: Forrest Nelson Iandola, Donald Benton MacMillen, Anting Shen, Harsimran Singh Sidhu, Paras Jagdish Jain
-
Patent number: 12096109Abstract: A system for automatically acquiring focus of remote flying objects (RFOs) includes an interface and processor. The interface is configured to receive a radar data and a lens temperature data. The processor is configured to determine a focal setting for a lens system based at least in part on the radar data and the lens temperature data; and provide the focal setting for the lens system.Type: GrantFiled: January 12, 2023Date of Patent: September 17, 2024Assignee: Anduril Industries, Inc.Inventors: Brian Marcin Camacho, Calvin Michael Hareng, Corey Martin Hass, Forrest Nelson Iandola, Gokul Ganesh Subramanian, Nadav Ben-Haim, Adnan Esmail, Kevin Michael Christensen
-
Publication number: 20240296330Abstract: A neural network architecture is used that reduces the processing load of implementing the neural network. This network architecture may thus be used for reduced-bit processing devices. The architecture may limit the number of bits used for processing and reduce processing to prevent data overflow at individual calculations of the neural network. To implement this architecture, the number of bits used to represent inputs at levels of the network and the related filter masks may also be modified to ensure the number of bits of the output does not overflow the resulting capacity of the reduced-bit processor. To additionally reduce the load for such a network, the network may implement a “starconv” structure that permits the incorporation of nearby nodes in a layer to balance processing requirements and permit the network to learn from context of other nodes.Type: ApplicationFiled: May 14, 2024Publication date: September 5, 2024Inventors: Forrest Nelson Iandola, Harsimran Singh Sidhu, Yiqi Hou
-
Patent number: 12079723Abstract: A model training and implementation pipeline trains models for individual embedded systems. The pipeline iterates through multiple models and estimates the performance of the models. During a model generation stage, the pipeline translates the description of the model together with the model parameters into an intermediate representation in a language that is compatible with a virtual machine. The intermediate representation is agnostic or independent to the configuration of the target platform. During a model performance estimation stage, the pipeline evaluates the performance of the models without training the models. Based on the analysis of the performance of the untrained models, a subset of models is selected. The selected models are then trained and the performance of the trained models are analyzed. Based on the analysis of the performance of the trained models, a single model is selected for deployment to the target platform.Type: GrantFiled: March 14, 2023Date of Patent: September 3, 2024Assignee: Tesla, Inc.Inventors: Harsimran Singh Sidhu, Paras Jagdish Jain, Daniel Paden Tomasello, Forrest Nelson Iandola
-
Patent number: 12020476Abstract: An autonomous control system generates synthetic data that reflect simulated environments. Specifically, the synthetic data is a representation of sensor data of the simulated environment from the perspective of one or more sensors. The system generates synthetic data by introducing one or more simulated modifications to sensor data captured by the sensors or by simulating the sensor data for a virtual environment. The autonomous control system uses the synthetic data to train computer models for various detection and control algorithms. In general, this allows autonomous control systems to augment training data to improve performance of computer models, simulate scenarios that are not included in existing training data, and/or train computer models that remove unwanted effects or occlusions from sensor data of the environment.Type: GrantFiled: October 28, 2022Date of Patent: June 25, 2024Assignee: Tesla, Inc.Inventors: Forrest Nelson Iandola, Donald Benton MacMillen, Anting Shen, Harsimran Singh Sidhu, Paras Jagdish Jain
-
Patent number: 11983630Abstract: A neural network architecture is used that reduces the processing load of implementing the neural network. This network architecture may thus be used for reduced-bit processing devices. The architecture may limit the number of bits used for processing and reduce processing to prevent data overflow at individual calculations of the neural network. To implement this architecture, the number of bits used to represent inputs at levels of the network and the related filter masks may also be modified to ensure the number of bits of the output does not overflow the resulting capacity of the reduced-bit processor. To additionally reduce the load for such a network, the network may implement a “starconv” structure that permits the incorporation of nearby nodes in a layer to balance processing requirements and permit the network to learn from context of other nodes.Type: GrantFiled: January 19, 2023Date of Patent: May 14, 2024Assignee: Tesla, Inc.Inventors: Forrest Nelson Iandola, Harsimran Singh Sidhu, Yiqi Hou
-
Publication number: 20230289599Abstract: A model training and implementation pipeline trains models for individual embedded systems. The pipeline iterates through multiple models and estimates the performance of the models. During a model generation stage, the pipeline translates the description of the model together with the model parameters into an intermediate representation in a language that is compatible with a virtual machine. The intermediate representation is agnostic or independent to the configuration of the target platform. During a model performance estimation stage, the pipeline evaluates the performance of the models without training the models. Based on the analysis of the performance of the untrained models, a subset of models is selected. The selected models are then trained and the performance of the trained models are analyzed. Based on the analysis of the performance of the trained models, a single model is selected for deployment to the target platform.Type: ApplicationFiled: March 14, 2023Publication date: September 14, 2023Inventors: Harsimran Singh Sidhu, Paras Jagdish Jain, Daniel Paden Tomasello, Forrest Nelson Iandola
-
Publication number: 20230269477Abstract: A system for automatically maintaining focus while tracking remote flying objects includes an interface and processor. The interface is configured to receive two or more images. The processor is configured to determine a bounding box for an object in the two or more images; determine an estimated position for the object in a future image; and determine an estimated focus setting and an estimated pointing direction for a lens system.Type: ApplicationFiled: February 10, 2023Publication date: August 24, 2023Inventors: Brian Marcin Camacho, Calvin Michael Hareng, Corey Martin Hass, Forrest Nelson Iandola, Gokul Ganesh Subramanian, Nadav Ben-Haim, Adnan Esmail, Kevin Michael Christensen
-
Publication number: 20230254570Abstract: A system for automatically acquiring focus of remote flying objects (RFOs) includes an interface and processor. The interface is configured to receive a radar data and a lens temperature data. The processor is configured to determine a focal setting for a lens system based at least in part on the radar data and the lens temperature data; and provide the focal setting for the lens system.Type: ApplicationFiled: January 12, 2023Publication date: August 10, 2023Inventors: Brian Marcin Camacho, Calvin Michael Hareng, Corey Martin Hass, Forrest Nelson Iandola, Gokul Ganesh Subramanian, Nadav Ben-Haim, Adnan Esmail, Kevin Michael Christensen
-
Publication number: 20230237331Abstract: A neural network architecture is used that reduces the processing load of implementing the neural network. This network architecture may thus be used for reduced-bit processing devices. The architecture may limit the number of bits used for processing and reduce processing to prevent data overflow at individual calculations of the neural network. To implement this architecture, the number of bits used to represent inputs at levels of the network and the related filter masks may also be modified to ensure the number of bits of the output does not overflow the resulting capacity of the reduced-bit processor. To additionally reduce the load for such a network, the network may implement a “starconv” structure that permits the incorporation of nearby nodes in a layer to balance processing requirements and permit the network to learn from context of other nodes.Type: ApplicationFiled: January 19, 2023Publication date: July 27, 2023Inventors: Forrest Nelson Iandola, Harsimran Singh Sidhu, Yiqi Hou
-
Publication number: 20230177819Abstract: An autonomous control system generates synthetic data that reflect simulated environments. Specifically, the synthetic data is a representation of sensor data of the simulated environment from the perspective of one or more sensors. The system generates synthetic data by introducing one or more simulated modifications to sensor data captured by the sensors or by simulating the sensor data for a virtual environment. The autonomous control system uses the synthetic data to train computer models for various detection and control algorithms. In general, this allows autonomous control systems to augment training data to improve performance of computer models, simulate scenarios that are not included in existing training data, and/or train computer models that remove unwanted effects or occlusions from sensor data of the environment.Type: ApplicationFiled: October 28, 2022Publication date: June 8, 2023Inventors: Forrest Nelson Iandola, Donald Benton MacMillen, Anting Shen, Harsimran Singh Sidhu, Paras Jagdish Jain
-
Patent number: 11636333Abstract: A model training and implementation pipeline trains models for individual embedded systems. The pipeline iterates through multiple models and estimates the performance of the models. During a model generation stage, the pipeline translates the description of the model together with the model parameters into an intermediate representation in a language that is compatible with a virtual machine. The intermediate representation is agnostic or independent to the configuration of the target platform. During a model performance estimation stage, the pipeline evaluates the performance of the models without training the models. Based on the analysis of the performance of the untrained models, a subset of models is selected. The selected models are then trained and the performance of the trained models are analyzed. Based on the analysis of the performance of the trained models, a single model is selected for deployment to the target platform.Type: GrantFiled: July 25, 2019Date of Patent: April 25, 2023Assignee: Tesla, Inc.Inventors: Harsimran Singh Sidhu, Paras Jagdish Jain, Daniel Paden Tomasello, Forrest Nelson Iandola
-
Patent number: 11611707Abstract: A system for automatically maintaining focus while tracking remote flying objects includes an interface and processor. The interface is configured to receive two or more images. The processor is configured to determine a bounding box for an object in the two or more images; determine an estimated position for the object in a future image; and determine an estimated focus setting and an estimated pointing direction for a lens system.Type: GrantFiled: May 24, 2021Date of Patent: March 21, 2023Assignee: Anduril Industries, Inc.Inventors: Brian Marcin Camacho, Calvin Michael Hareng, Corey Martin Hass, Forrest Nelson Iandola, Gokul Ganesh Subramanian, Nadav Ben-Haim, Adnan Esmail, Kevin Michael Christensen
-
Patent number: 11606492Abstract: A system for automatically acquiring focus of remote flying objects (RFOs) includes an interface and processor. The interface is configured to receive a radar data and a lens temperature data. The processor is configured to determine a focal setting for a lens system based at least in part on the radar data and the lens temperature data; and provide the focal setting for the lens system.Type: GrantFiled: May 24, 2021Date of Patent: March 14, 2023Assignee: Anduril Industries, Inc.Inventors: Brian Marcin Camacho, Calvin Michael Hareng, Corey Martin Hass, Forrest Nelson Iandola, Gokul Ganesh Subramanian, Nadav Ben-Haim, Adnan Esmail, Kevin Michael Christensen
-
Patent number: 11562231Abstract: A neural network architecture is used that reduces the processing load of implementing the neural network. This network architecture may thus be used for reduced-bit processing devices. The architecture may limit the number of bits used for processing and reduce processing to prevent data overflow at individual calculations of the neural network. To implement this architecture, the number of bits used to represent inputs at levels of the network and the related filter masks may also be modified to ensure the number of bits of the output does not overflow the resulting capacity of the reduced-bit processor. To additionally reduce the load for such a network, the network may implement a “starconv” structure that permits the incorporation of nearby nodes in a layer to balance processing requirements and permit the network to learn from context of other nodes.Type: GrantFiled: September 3, 2019Date of Patent: January 24, 2023Assignee: Tesla, Inc.Inventors: Forrest Nelson Iandola, Harsimran Singh Sidhu, Yiqi Hou
-
Publication number: 20220377232Abstract: A system for automatically acquiring focus of remote flying objects (RFOs) includes an interface and processor. The interface is configured to receive a radar data and a lens temperature data. The processor is configured to determine a focal setting for a lens system based at least in part on the radar data and the lens temperature data; and provide the focal setting for the lens system.Type: ApplicationFiled: May 24, 2021Publication date: November 24, 2022Inventors: Brian Marcin Camacho, Calvin Michael Hareng, Corey Martin Hass, Forrest Nelson Iandola, Gokul Ganesh Subramanian, Nadav Ben-Haim, Adnan Esmail, Kevin Michael Christensen
-
Publication number: 20220377242Abstract: A system for automatically maintaining focus while tracking remote flying objects includes an interface and processor. The interface is configured to receive two or more images. The processor is configured to determine a bounding box for an object in the two or more images; determine an estimated position for the object in a future image; and determine an estimated focus setting and an estimated pointing direction for a lens system.Type: ApplicationFiled: May 24, 2021Publication date: November 24, 2022Inventors: Brian Marcin Camacho, Calvin Michael Hareng, Corey Martin Hass, Forrest Nelson Iandola, Gokul Ganesh Subramanian, Nadav Ben-Haim, Adnan Esmail, Kevin Michael Christensen
-
Patent number: 11487288Abstract: An autonomous control system generates synthetic data that reflect simulated environments. Specifically, the synthetic data is a representation of sensor data of the simulated environment from the perspective of one or more sensors. The system generates synthetic data by introducing one or more simulated modifications to sensor data captured by the sensors or by simulating the sensor data for a virtual environment. The autonomous control system uses the synthetic data to train computer models for various detection and control algorithms. In general, this allows autonomous control systems to augment training data to improve performance of computer models, simulate scenarios that are not included in existing training data, and/or train computer models that remove unwanted effects or occlusions from sensor data of the environment.Type: GrantFiled: June 8, 2020Date of Patent: November 1, 2022Assignee: Tesla, Inc.Inventors: Forrest Nelson Iandola, Donald Benton MacMillen, Anting Shen, Harsimran Singh Sidhu, Paras Jagdish Jain