Patents by Inventor Foster B. Stulen

Foster B. Stulen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150340586
    Abstract: A method for controlling a waveform shape of a motional branch current in an ultrasonic transducer of a surgical device. The method may comprise generating a transducer drive signal by selectively recalling, using a direct digital synthesis (DDS) algorithm, drive signal waveform samples stored in a look-up table (LUT), generating samples of current and voltage of the transducer drive signal when the transducer drive signal is communicated to the surgical device, determining samples of the motional branch current based on the current and voltage samples, a static capacitance of the ultrasonic transducer and a frequency of the transducer drive signal, comparing each sample of the motional branch current to a respective target sample of a target waveform to determine an error amplitude, and modifying the drive signal waveform samples stored in the LUT such that an amplitude error between subsequent samples of the motional branch current and respective target samples is reduced.
    Type: Application
    Filed: May 18, 2015
    Publication date: November 26, 2015
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, James R. Giordano, Foster B. Stulen, Joseph A. Brotz, John E. Hein
  • Publication number: 20150327883
    Abstract: Various embodiments are directed to a method of driving an end effector coupled to an ultrasonic drive system of a surgical instrument. In accordance with the method, a generator is configured to generate at least one time varying electrical signal having a resonant frequency, monitor the resonant frequency of the at least one electrical signal, compare the resonant frequency to a threshold frequency, and trigger a first response of the generator when the resonant frequency crosses the threshold frequency.
    Type: Application
    Filed: July 27, 2015
    Publication date: November 19, 2015
    Inventors: Jeffrey D. Messerly, Eitan T. Wiener, Brian T. Noyes, Jeffrey L. Aldridge, James R. Giordano, Robert J. Beetel, III, Daniel J. Abbott, Foster B. Stulen, Matthew C. Miller, Aaron C. Voegele, Jeffrey P. Wiley, Nathan J. Price, Daniel W. Price, Robert L. Koch, JR.
  • Publication number: 20150328484
    Abstract: Various embodiments are directed to a method of driving an end effector coupled to an ultrasonic drive system of a surgical instrument. In accordance with the method, a generator is configured to generate at least one time varying electrical signal having a resonant frequency, monitor the resonant frequency of the at least one electrical signal, calculate a frequency slope between frequency data points of the time varying electrical signal, where the frequency slope is the change in resonant frequency over time, compare the frequency slope to a threshold frequency slope, and trigger a first response of the generator when the frequency slope crosses the threshold frequency slope.
    Type: Application
    Filed: July 27, 2015
    Publication date: November 19, 2015
    Inventors: Jeffrey D. Messerly, Eitan T. Wiener, Brian T. Noyes, Jeffrey L. Aldridge, James R. Giordano, Robert J. Beetel, III, Daniel J. Abbott, Foster B. Stulen, Matthew C. Miller, Aaron C. Voegele, Jeffrey P. Wiley, Nathan J. Price, Daniel W. Price, Robert L. Koch, JR.
  • Publication number: 20150320438
    Abstract: An apparatus comprises a body assembly, a shaft, an acoustic waveguide, an articulation section, an end effector, and an articulation drive assembly. The shaft extends distally from the body assembly and defines a longitudinal axis. The acoustic waveguide comprises a flexible portion. The articulation section is coupled with the shaft. A portion of the articulation section encompasses the flexible portion of the waveguide. The articulation section comprises a plurality of body portions aligned along the longitudinal axis and a flexible locking member. The flexible locking member is operable to secure the body portions in relation to each other and in relation to the shaft. The end effector comprises an ultrasonic blade in acoustic communication with the waveguide. The articulation drive assembly is operable to drive articulation of the articulation section to thereby deflect the end effector from the longitudinal axis.
    Type: Application
    Filed: April 16, 2015
    Publication date: November 12, 2015
    Inventors: William B. Weisenburgh, II, Willliam A. Olson, Foster B. Stulen, Barry C. Worrell, David A. Monroe, Jeffrey L. Aldridge, Benjamin D. Dickerson, Craig N. Faller, William D. Fox, Michael J. Stokes
  • Publication number: 20150320437
    Abstract: An apparatus comprises a body assembly, a shaft, an acoustic waveguide, an articulation section, an end effector, and an articulation drive assembly. The shaft extends distally from the body assembly and defines a longitudinal axis. The acoustic waveguide comprises a flexible portion. The articulation section is coupled with the shaft. A portion of the articulation section encompasses the flexible portion of the waveguide. The articulation section comprises a plurality of body portions aligned along the longitudinal axis and a flexible locking member. The flexible locking member is operable to secure the body portions in relation to each other and in relation to the shaft. The end effector comprises an ultrasonic blade in acoustic communication with the waveguide. The articulation drive assembly is operable to drive articulation of the articulation section to thereby deflect the end effector from the longitudinal axis.
    Type: Application
    Filed: April 16, 2015
    Publication date: November 12, 2015
    Inventors: Barry C. Worrell, Benjamin J. Danziger, Benjamin D. Dickerson, Brian D. Black, Cara L. Shapiro, Charles J. Scheib, Craig N. Faller, Daniel J. Mumaw, David J. Cagle, David T. Martin, David A. Monroe, Disha V. Labhasetwar, Foster B. Stulen, Frederick L. Estera, Geoffrey S. Strobl, Gregory W. Johnson, Jacob S. Gee, Jason R. Sullivan, Jeffrey D. Messerly, Jeffrey S. Swayze, John A. Hibner, John B. Schulte, Joseph E. Hollo, Kristen G. Denzinger, Kristen L. Pirozzi, Matthew C. Miller, Michael R. Lamping, Richard W. Timm, Rudolph H. Nobis, Ryan M. Asher, Stephen M. Leuck, Tylor C. Muhlenkamp, William B. Weisenburgh, II, William A. Olson
  • Publication number: 20150297286
    Abstract: A surgical instrument includes an end effector and a feedback system. The end effector includes a first jaw and a second jaw, wherein at least one of the first jaw and the second jaw is movable relative to the other one of the first jaw and the second jaw to transition the end effector during a closure stroke between an open configuration, a first approximated configuration, and a second approximated configuration. The feedback system includes an indicator, the indicator transitionable between a first indicator position, a second indicator position, and a third indicator position, wherein the indicator is in the first indicator position when the end effect is in the open configuration, wherein the indicator is in the second indicator position when the end effector is in the first approximated configuration, and wherein the indicator is in the third indicator position when the end effector is in the second approximated configuration.
    Type: Application
    Filed: April 17, 2014
    Publication date: October 22, 2015
    Applicant: Ethicon Endo-Surgery, Inc.
    Inventors: Chad P. Boudreaux, David A. Monroe, Rafael J. Ruiz Ortiz, Foster B. Stulen, Jeffrey L. Aldridge, Catherine A. Corbett, Terry A. McFarland
  • Publication number: 20150289925
    Abstract: A surgical system includes a module for compiling a plurality of operational parameters of the surgical system during a plurality of treatment cycles performed by the surgical system. The module includes a processor and a memory unit, the processor configured to store in the memory unit values of the plurality of operational parameters associated with each of the plurality of treatment cycles, wherein the processor is configured to identify a subset of the stored values of the plurality of operational parameters temporally proximate to an intervening event.
    Type: Application
    Filed: April 15, 2014
    Publication date: October 15, 2015
    Applicant: Ethicon Endo-Surgery, Inc.
    Inventors: Aaron C. Voegele, Phillip H. Clauda, Kevin L. Houser, Robert A. Kemerling, Mark A. Davison, Foster B. Stulen, Gregory A. Trees
  • Publication number: 20150265305
    Abstract: An ultrasonic forceps comprises a housing, an acoustic assembly, and a tine. The housing joins the acoustic assembly and the tine to the forceps and permits the tine to pivot relative to the acoustic assembly. The acoustic assembly comprises a transducer, a waveguide, and ultrasonic blade, and a waveguide sheath. The transducer is configured to generate ultrasonic vibrations directing the ultrasonic vibrations to the waveguide. The waveguide communicates the ultrasonic vibrations distally to the ultrasonic blade. The ultrasonic blade is configured to vibrate in response to the ultrasonic vibrations generated by the transducer. When the tine is pivoted relative to the transducer, the tine is configured to move toward the ultrasonic blade. Tissue may be grasped between the tine and the ultrasonic blade. The tissue may be denatured when the ultrasonic vibrations generated by the transducer vibrate the ultrasonic blade, thus resulting in the tissue being cut and/or sealed.
    Type: Application
    Filed: March 24, 2014
    Publication date: September 24, 2015
    Inventors: Foster B. Stulen, Michael R. Lamping, Cory G. Kimball, Emron J. Henry, Michael J. Stokes
  • Patent number: 9114245
    Abstract: Ultrasound surgical apparatus are disclosed, including: medical ultrasound handpieces with proximally mounted ultrasound radiators configured to create a distally-focused beam of ultrasound energy, in combination with distal guide members for control of focal point depth; medical ultrasound handpieces with proximally mounted ultrasound radiators configured to create a distally-focused beam of ultrasound energy, in combination with distal rolling members for manipulability and control of focal point depth; medical ultrasound handpiece assemblies with coupled end effectors providing a probe with a probe dilation region configured to have an average outside diameter that is equal to or greater than the average outside diameter of a probe tip and neck; as well as junctions to an ultrasonically inactive probe sheath; medical ultrasound handpiece assemblies with coupled end effectors having positionable, ultrasonically inactive probe sheath ends slidably operable to both cover and expose at least a probe tip; and u
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: August 25, 2015
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: Timothy G. Dietz, Foster B. Stulen, William A. Olson
  • Publication number: 20150230853
    Abstract: A surgical instrument is disclosed. The surgical instrument can include an end effector, a shaft, and a handle. The handle can include a trigger assembly.
    Type: Application
    Filed: May 4, 2015
    Publication date: August 20, 2015
    Inventors: Gregory W. Johnson, Jeffrey S. Swayze, Jason L. Harris, Foster B. Stulen, Prasanna Malaviya
  • Patent number: 9095367
    Abstract: In one embodiment, a surgical instrument comprises an articulable harmonic waveguide. The articulable harmonic waveguide comprises a first drive section comprising a proximal end and a distal end. The proximal end of the first drive section may be configured to connect to an ultrasonic transducer. The articulable harmonic waveguide further comprises a first flexible waveguide coupled to the distal end of the first drive section. An end effector extends distally from the first flexible waveguide. The surgical instrument further comprises an articulation actuator to flex the first flexible waveguide.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: August 4, 2015
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: William A. Olson, Kevin L. Houser, Jeffrey D. Messerly, Foster B. Stulen
  • Patent number: 9095346
    Abstract: A surgical instrument includes a handle assembly having a lower portion with a hingedly attached end piece. When open, the end piece allows for receipt of a data card in a lower portion aperture. When closed, the end piece covers the aperture. In another version, the aperture is configured to receive a data card and battery pack assembly. Information is readable from and to the data card to measure a number of minutes the instrument was used during a procedure. Such information is communicated via wired or wireless communication to another device to determine a payment for the number of minutes used. Minutes are buyable from the device and writable onto the data card prior to insertion of the card into the instrument. In another version, a testing sequence is used in saline or via a tissue proxy to test the functionality of an instrument prior to a procedure.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: August 4, 2015
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: Kevin L. Houser, Foster B. Stulen, Timothy G. Dietz, John W. Willis, Donna L. Korvick, Ashvani K. Madan, Aron O. Zingman
  • Publication number: 20150196318
    Abstract: Various embodiments are directed to a method of driving an end effector coupled to an ultrasonic drive system of a surgical instrument. The method comprises generating at least one electrical signal. The at least one electrical signal is monitored against a first set of logic conditions. A first response is triggered when the first set of logic conditions is met. A parameter is determined from the at least one electrical signal.
    Type: Application
    Filed: March 20, 2015
    Publication date: July 16, 2015
    Inventors: Jeffrey D. Messerly, Eitan T. Wiener, Brian T. Noyes, Jeffrey L. Aldridge, James R. Giordano, Robert J. Beetel, III, Daniel J. Abbott, Foster B. Stulen, Matthew C. Miller, Aaron C. Voegele, Jeffrey P. Wiley, Nathan J. Price, Daniel W. Price, Robert L. Koch, JR.
  • Publication number: 20150196352
    Abstract: In various embodiments, a surgical instrument is provided that may comprise an end effector for performing a surgical procedure on tissue, for example. The end effector may comprise at least one energy delivery surface and heat dissipation means for dissipating heat from at least a portion of the end effector. For example, in at least one embodiment, the end effector may comprise a first jaw, a second jaw, and a cutting member. The cutting member may comprise a cutting surface and a body, which may define a cavity and at least one opening communicating with the cavity. A fluid may be moved through the cavity to and/or from the opening(s). Additionally, in at least one embodiment, a surgical instrument's end effector may comprise a first jaw, a second jaw, a cutting member, and at least one heat pipe. Various other heat dissipation means are also disclosed.
    Type: Application
    Filed: March 20, 2015
    Publication date: July 16, 2015
    Inventors: Andrew T. Beckman, Bradley E. White, Cory G. Kimball, John F. Cummings, Al Mirel, Christopher J. Schall, Jeffrey L. Aldridge, Timothy G. Dietz, David A. Witt, Mary E. Mootoo, Zhifan F. Huang, Raymond M. Banks, Tamara Widenhouse, Frederick E. Shelton, IV, Jason L. Harris, Jeffrey S. Swayze, Foster B. Stulen, Prasanna Malaviya, Gregory W. Johnson, Paul Guerra
  • Patent number: 9072523
    Abstract: An apparatus maintains the sterility of a medical device while providing for the insertion of an insertable component into the medical device. The apparatus includes a medical device having a housing sized to contain the insertable component, an active feature, a cap, and a hinge member. A container encases the medical device within a device recess, a cap recess, and a container cover. The insertable component may be inserted into the housing while limiting potential contact with the exterior of the medical device. An alternative assembly comprises an insertion assembly having a handle and the insertable component detachably attached thereto. The medical device comprises a housing, an active feature, and a flexible member. An insertion tube is insertable within the flexible member to limit contact when the insertable component is inserted into the housing. Yet another configuration includes a resiliently hinged door assembly releasable by a release button.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: July 7, 2015
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: Kevin L. Houser, Foster B. Stulen, William D. Dannaher, Bret W. Smith, David N. Plescia, Michael J. Stokes, Sora Rhee, Timothy G. Dietz, Kevin D. Felder, Christopher B. Anderson, Jeffrey L. Aldridge
  • Publication number: 20150182232
    Abstract: A system includes an ultrasonic instrument and a bone insertion element. The instrument includes an ultrasonic transducer and an ultrasonic blade. The ultrasonic transducer is operable to convert electrical power into ultrasonic vibrations. The ultrasonic blade is in acoustic communication with the ultrasonic transducer such that the ultrasonic transducer drives the ultrasonic blade to vibrate ultrasonically to form an opening within bone. The bone insertion element is configured to be inserted within the opening formed by the ultrasonic blade.
    Type: Application
    Filed: December 26, 2013
    Publication date: July 2, 2015
    Inventors: Joseph Peterson, Matthew L. Parsons, Cory G. Kimball, Foster B. Stulen, Ashvani K. Madan, Roman Lomeli
  • Publication number: 20150182276
    Abstract: A method for determining motional branch current in an ultrasonic transducer of an ultrasonic surgical device over multiple frequencies of a transducer drive signal. The method may comprise, at each of a plurality of frequencies of the transducer drive signal, oversampling a current and voltage of the transducer drive signal, receiving, by a processor, the current and voltage samples, and determining, by the processor, the motional branch current based on the current and voltage samples, a static capacitance of the ultrasonic transducer and the frequency of the transducer drive signal.
    Type: Application
    Filed: March 13, 2015
    Publication date: July 2, 2015
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, Brian T. Noyes, Jeffrey D. Messerly, James R. Giordano, Robert J. Beetel, III, Nathan J. Price, Foster B. Stulen, Matthew C. Miller, Jeffrey P. Wiley, Daniel W. Price, Robert L. Koch, JR., Joseph A. Brotz, John E. Hein
  • Publication number: 20150182251
    Abstract: Various embodiments are directed to an apparatus and method of driving an end effector coupled to an ultrasonic drive system of a surgical instrument. The method comprises generating at least one electrical signal. The at least one electrical signal is monitored against a first set of logic conditions.
    Type: Application
    Filed: March 13, 2015
    Publication date: July 2, 2015
    Inventors: Jeffrey D. Messerly, Eitan T. Wiener, Brian T. Noyes, Jeffrey L. Aldridge, James R. Giordano, Robert J. Beetel, III, Daniel J. Abbott, Foster B. Stulen, Matthew C. Miller, Aaron C. Voegele, Jeffrey P. Wiley, Nathan J. Price, Daniel W. Price, Robert L. Koch, JR.
  • Publication number: 20150182277
    Abstract: A method for determining motional branch current in an ultrasonic transducer of an ultrasonic surgical device over multiple frequencies of a transducer drive signal. The method may comprise, at each of a plurality of frequencies of the transducer drive signal, oversampling a current and voltage of the transducer drive signal, receiving, by a processor, the current and voltage samples, and determining, by the processor, the motional branch current based on the current and voltage samples, a static capacitance of the ultrasonic transducer and the frequency of the transducer drive signal.
    Type: Application
    Filed: March 13, 2015
    Publication date: July 2, 2015
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, Brian T. Noyes, Jeffrey D. Messerly, James R. Giordano, Robert J. Beetel, III, Nathan J. Price, Foster B. Stulen, Matthew C. Miller, Jeffrey P. Wiley, Daniel W. Price, Robert L. Koch, Jr., Joseph A. Brotz, John E. Hein
  • Patent number: 9060775
    Abstract: A method for determining motional branch current in an ultrasonic transducer of an ultrasonic surgical device over multiple frequencies of a transducer drive signal. The method may comprise, at each of a plurality of frequencies of the transducer drive signal, oversampling a current and voltage of the transducer drive signal, receiving, by a processor, the current and voltage samples, and determining, by the processor, the motional branch current based on the current and voltage samples, a static capacitance of the ultrasonic transducer and the frequency of the transducer drive signal.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: June 23, 2015
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, James R. Giordano, Foster B. Stulen, Joseph A. Brotz, John E. Hein